

Références sciences

J’apprends facilement
le CSS avec GRID

& FLEXBOX

Carl Brison

9782340-035294_001_224.indd 19782340-035294_001_224.indd 1 19/09/2019 13:3819/09/2019 13:38

ISBN 9782340-035294
© Ellipses Édition Marketing S.A., 2019

 32, rue Bargue 75740 Paris cedex 15

Collection Références sciences

dirigée par Paul de Laboulaye
paul.delaboulaye@editions-ellipses.fr

Retrouvez tous les livres de la collection et des extraits sur www.editions-ellipses.fr

9782340-035294_001_224.indd 29782340-035294_001_224.indd 2 19/09/2019 13:3819/09/2019 13:38

Avant-propos
Jamais le CSS n'aura été aussi facile pour positionner des éléments !

Je réalise des sites internet depuis le début des années 2000 et à cette époque nous
nous servions des tableaux HTML pour gérer la mise en page de nos sites.
Puis de nouveaux supports pour visionner les sites internet sont arrivés sur le
marché, tels que les smartphones ou les tablettes. Il a alors fallu penser à un
nouveau mode de mise en page afin que les sites internet puissent s'adapter aux
nouveaux supports qui les visionnaient. De là, la mise en page par tableaux a été
abandonnée au profit d'une mise en page à l'aide du langage CSS.
Cependant, des propriétés CSS telles que FLOAT n'étaient pas adaptées à la mise
en page d'un site internet. Et parfois il pouvait même être extrêmement laborieux
de mettre en page un site internet à l'aide des propriétés classiques du CSS.
C'est d'ailleurs pour celà que des frameworks tels que bootstrap ont vu le jour, pour
aider les concepteurs de sites internet à réaliser des mises en pages plus facilement.
Oui mais voilà, bootstrap n'est pas une technique officielle et le CCS ne peut pas se
faire voler la vedette par un framework, d'où la naissance des technologies grid et
flexbox !
Il s'agit de techniques très simples du CSS pour positionner tous les éléments d'un
site internet, exactement comme on le souhaite.
Dans ce livre nous allons apprendre toutes les propriétés liées à grid et à flexbox
ainsi que toutes leurs valeurs.
Nous étudierons ces technologies séparément puis nous verrons comment les
utiliser ensemble pour mettre en page un site web.

A la fin de la lecture de ce livre, vous serez largement opérationnel pour réaliser la
mise en page de n'importe quel site internet.

Je vous souhaite une bonne lecture,

Carl Brison.

9782340-035294_001_224.indd 39782340-035294_001_224.indd 3 19/09/2019 13:3819/09/2019 13:38

9782340-035294_001_224.indd 49782340-035294_001_224.indd 4 19/09/2019 13:3819/09/2019 13:38

Table des matières
::: Partie 1

CSS GRID

Chapitre 1..11
Présentation de grid..11

1.1. Introduction..11
1.2. Comment est constituée la grille..11
1.3. Le display grid et le display inline-grid.......................................14
1.4. Conclusion de ce chapitre..15

Chapitre 2..17
Le conteneur et ses propriétés..17

2.1. Mise en place du conteneur et des contenus................................17
2.2. Un contenu peut devenir un conteneur ..18
2.3. Création de colonnes ...20
2.4. Gestion de la hauteur des lignes...22
2.5. Les gouttières...28
2.6. Une nouvelle unité de mesure..30
2.7. La fonction repeat..35

Chapitre 3..39
Les contenus et leurs propriétés...39

3.1. Les lignes de grille verticales...39
3.2. Les lignes de grille horizontales...42
3.3. Le mot-clé span..45
3.4. Propriétés raccourcies..47

Chapitre 4..51
Autres propriétés..51

4.1. Changer le sens d'affichage..51
4.2. Créer une colonne virtuelle..53
4.3. Créer une ligne virtuelle...56
4.4. Application aux balises HTML5..57
4.5. Définition des zones...62
4.6. La fonction minmax..68
4.7. La propriété order...70

9782340-035294_001_224.indd 59782340-035294_001_224.indd 5 19/09/2019 13:3819/09/2019 13:38

6 Table des matières

Chapitre 5..75
Déplacement des contenus...75

5.1. Présentation..75
5.2. Alignement de la grille sur l'axe horizontal..................................77
5.3. Alignement de la grille sur l'axe vertical......................................81
5.4. Alignement de tous les contenus..87
5.5. Alignement d'un contenu..96

Chapitre 6..101
Création d'une maquette d'un site responsive..101

6.1. Présentation du travail..101
6.2. Mise en place des bases du travail...101
6.3. CSS côté smartphone...105
6.4. CSS côté ordinateur..108
6.5. Conclusion..110

::: Partie 2
FLEXBOX

Chapitre 7..115
Le display flex..115

7.1. Mise en place de nos documents de base...................................115
7.2. Déclarer du flex dans notre code CSS117
7.3. Deux possibilités flex ou inline-flex ..118
7.4. La largeur des contenus ...118
7.5. Modifions le style par défaut..119

Chapitre 8..121
La différence entre flex et inline-flex...121

8.1. La propriété display..121
8.2. Plusieurs conteneurs flex..122
8.3. Plusieurs conteneurs inline-flex..124
8.4. Conclusion de ce chapitre..125

9782340-035294_001_224.indd 69782340-035294_001_224.indd 6 19/09/2019 13:3819/09/2019 13:38

Table des matières 7

Chapitre 9..127
Définir la direction des contenus...127

9.1. Une propriété CSS liée à la direction...127
9.2. Diriger nos contenus en ligne...127
9.3. Diriger nos contenus en colonne..129
9.4. Diriger nos contenus en ligne inversée......................................130
9.5. Diriger nos contenus en colonne inversée..................................131
9.6. Conclusion..132

Chapitre 10..133
Le retour à la ligne...133

10.1. Une propriété CSS liée au retour à la ligne..............................133
10.2. Empêcher le retour à la ligne des contenus..............................133
10.3. Autoriser le retour à la ligne des contenus...............................135
10.4. Autoriser le retour à la ligne inversé des contenus...................136
10.5. Une propriété réunissant deux propriétés.................................137
10.6. Conclusion..137

Chapitre 11..139
L'axe principal et l'axe secondaire...139

11.1. La notion d'axe...139
11.2. Alignement sur l'axe principal..140
11.3. Alignement horizontal..141
11.4. Alignement vertical..143
11.5. Récapitulatif de ce que nous savons...150
11.6. Alignement sur l'axe secondaire...151
11.7. Inversion de l'axe principal...156
11.8. Alignement d'un contenu particulier...160
11.9. Alignement de plusieurs lignes ou colonnes............................167
11.10. Conclusion..175

Chapitre 12..177
Manipulation des contenus...177

12.1. Gérer les ordres d'affichage..177
12.2. Augmenter la largeur d'un contenu...181
12.3. Diminuer ou définir la largeur d'un contenu............................185
12.4. La super propriété flex ...189
12.5. Conclusion..190

9782340-035294_001_224.indd 79782340-035294_001_224.indd 7 19/09/2019 13:3819/09/2019 13:38

8 Table des matières

Chapitre 13..191
Création d'une maquette...191

13.1. Présentation du travail..191
13.2. Première partie...192
13.3. Deuxième partie...193
13.4. Conclusion..198

::: Partie 3
GRID & FLEXBOX ENSEMBLE

Chapitre 14..201
Utiliser grid & flexbox ensemble...201

14.1. Le principe de base...201
14.2. Le HTML 5...202
14.3. Les principes de base de grid...206
14.4. Le principe des media queries..210
14.5. Le viewport...211
14.6. Mise en place du responsive...212
14.7. Les principes de base de flexbox..215

Index lexical...221

9782340-035294_001_224.indd 89782340-035294_001_224.indd 8 19/09/2019 13:3819/09/2019 13:38

Partie 1

CSS-GRID

9782340-035294_001_224.indd 99782340-035294_001_224.indd 9 19/09/2019 13:3819/09/2019 13:38

9782340-035294_001_224.indd 109782340-035294_001_224.indd 10 19/09/2019 13:3819/09/2019 13:38

Chapitre 1
Présentation de grid

1.1. Introduction
Tout d'abord, pour accéder à la technologie grid, nous devons utiliser la propriété
CSS display à qui nous donnons la valeur grid. Ceci aura pour conséquence de
créer une grille virtuelle afin de nous faciliter la mise en page des élements HTML.
Voici le code CSS :
display: grid;

1.2. Comment est constituée la grille
La grille est constituée de lignes et de colonnes, elles-mêmes séparées par des
lignes de grille. Voici à quoi ressemble la grille :

Figure 1-1 : Grille CSS

La grille est constituée de plusieurs lignes et de plusieurs colonnes. Il peut y avoir
autant de lignes et de colonnes que l'on souhaite
La grille est également constituée de lignes de grille. Les lignes de grille sont les
lignes qui vont séparer les différentes lignes et colonnes qui constituent la grille. La
ligne de grille est également présente tout autour de la grille.
En étudiant la figure ci-dessus (figure 1-1), nous pouvons nous apercevoir que
celle-ci est constituée de 3 lignes.

9782340-035294_001_224.indd 119782340-035294_001_224.indd 11 19/09/2019 13:3819/09/2019 13:38

12 Chapitre 1

Voici les 3 lignes de notre grille :

Figure 1-2 : Les lignes

De même qu'en étudiant la figure 1-1, nous pouvons nous apercevoir que celle-ci-
est constituée de 3 colonnes.

Figure 1-3 : Les colonnes

Quant aux lignes de grille, nous avons sur la figure 1-1, 4 lignes de grille
horizontale et 4 lignes de grille verticale.

9782340-035294_001_224.indd 129782340-035294_001_224.indd 12 19/09/2019 13:3819/09/2019 13:38

Présentation de grid 13

Voici les 4 lignes de grille horizontale :

Figure 1-4 : Lignes de grille horizontale

Voici les 4 lignes de grille verticale :

Figure 1-5 : Lignes de grille verticale

9782340-035294_001_224.indd 139782340-035294_001_224.indd 13 19/09/2019 13:3819/09/2019 13:38

14 Chapitre 1

1.3. Le display grid et le display inline-grid
Comme nous l'avons vu au début de ce chapitre, pour accéder à la technologie grid
nous devons nous servir de la propriété CSS display.

Nous allons créer deux boîtes div dans un fichier HTML à qui nous allons donner
un identifiant. Nous écrirons le mot Grille 1 dans la première boîte et le mot Grille
2 dans la seconde boîte.
<div id=''grille1''>Grille 1</div>
<div id=''grille2''>Grille 2</div>

Nous allons ensuite donner une couleur de fond à ces boîtes div dans un fichier
CSS externe.
#grille1 {

background-color: #f00;
}
#grille2 {

background-color: #00f;
}

Voici le résultat que nous allons obtenir dans un navigateur :

Figure 1-6 : Mise en place de 2 boîtes div

Sans surprise, nous constatons que les deux boîtes div sont empilées l'une sur
l'autre car par défaut elles ont un comportement de type bloc.
Nous allons maintenant ajouter la propriété display à nos deux identifiants à qui
nous donnerons la valeur grid.
#grille1 {

background-color: #f00;
display: grid;

}
#grille2 {

background-color: #00f;
display: grid;

}

9782340-035294_001_224.indd 149782340-035294_001_224.indd 14 19/09/2019 13:3819/09/2019 13:38

Présentation de grid 15

Voyons à présent ce que cela va nous donner comme résultat dans un navigateur :

Figure 1-7 : Résultat du display grid

Le constat que nous faisons ici est que le fait d'avoir défini un display: grid aux
deux boîtes div n'a absolument pas modifié le résultat dans un navigateur.
Nous pouvons donc conclure que le fait de définir un display: grid à une boîte div
donne à cette boîte div un comportement de type bloc. Il n'est donc pas possible de
positionner ces deux boîtes div l'une à côté de l'autre.
Comment faire pour modifier cet état si malgré tout on souhaite positionner ces
deux boîtes div l'une à côté de l'autre ? Il suffit tout simplement de modifier la
valeur du display en la passant de grid à inline-grid.
Vérifions cela en modifiant notre code CSS :
#grille1 {

background-color: #f00;
display: inline-grid;

}
#grille2 {

background-color: #00f;
display: inline-grid;

}

Voici le résultat obtenu dans un navigateur

Figure 1-8 : Résultat du display inline-grid

Nos deux boîtes div viennent de perdre leur comportement de type bloc pour
adopter celui du type inline. Elles ont pour largeur ce qu'elles contiennent.

1.4. Conclusion de ce chapitre
Pour accéder aux grilles, nous devons utiliser la propriété CSS display. Si nous
souhaitons que la boîte qui va contenir cette propriété CSS soit de type bloc, alors
nous donnerons la valeur grid. Si nous souhaitons que la boîte qui va contenir cette
propriété CSS soit de type inline, alors nous donnerons la valeur inline-grid.
Ce qu'il faut également retenir est que la boîte qui va contenir le display: grid
deviendra alors un conteneur. C'est-à-dire qu'elle contiendra une grille.

9782340-035294_001_224.indd 159782340-035294_001_224.indd 15 19/09/2019 13:3819/09/2019 13:38

9782340-035294_001_224.indd 169782340-035294_001_224.indd 16 19/09/2019 13:3819/09/2019 13:38

Chapitre 2
Le conteneur et ses propriétés

2.1. Mise en place du conteneur et des contenus
Il est très important de bien comprendre ce qu'est un conteneur et ce que sont les
contenus. Le conteneur est une boîte qui va contenir d'autres boîtes, c'est-à-dire des
contenus. C'est au conteneur que l'on donne la propriété display: grid.
Prenons tout de suite un exemple en créant des boîtes div dans un document
HTML. Nous donnerons un identifiant à la boîte qui sera le conteneur et nous
donnerons une classe aux boîtes qui seront les contenus.
<div id=''grille''>

<div class=''un''>un</div>
<div class=''deux''>deux</div>
<div class=''trois''>trois</div>
<div class=''quatre''>quatre</div>
<div class=''cinq''>cinq</div>
<div class=''six''>six</div>

</div>

Ici le conteneur a pour identifiant le mot grille et les contenus ont pour classe les
mots un, deux, trois jusqu'à six.
Le conteneur renferme les six boîtes div. C'est à lui que nous allons donner la
technologie grid au travers d'une feuille de style. Quant aux contenus, nous leur
donnerons à chacun une couleur différente.
#grille {

display: grid;
}
.un {

background-color: #fcf;
}
.deux {

background-color: #f9f;
}
.trois {

background-color: #f6f;
}

9782340-035294_001_224.indd 179782340-035294_001_224.indd 17 19/09/2019 13:3819/09/2019 13:38

18 Chapitre 2

.quatre {
background-color: #fc9;

}
.cinq {

background-color: #fc6;
}
.six {

background-color: #f96;
}

Voici le résultat que nous obtenons dans un navigateur :

Figure 2-1 : Conteneur et contenus

Nous pouvons observer que le conteneur ainsi que les contenus ont par défaut un
comportement de type bloc et ce malgré le fait que l'on a donné la propriété display
au conteneur.
Par conséquent, le fait de donner la propriété display: grid à un conteneur ne
modifie en rien le comportement par défaut des boîtes div. En revanche, cela nous
permet d'entrer dans la technologie grid et d'accéder ainsi à des nouvelles
propriétés CSS qui vont nous permettre de créer une grille virtuelle et de
positionner les contenus selon cette grille.

2.2. Un contenu peut devenir un conteneur
Dans la seconde partie de ce livre, nous étudierons la technologie flexbox. Il s'agit
là-aussi d'une technologie CSS de positionnement d'éléments. Cependant la
technologie flexbox et la technologie grid ne sont pas concurrentes mais
complémentaires.
Bien que nous n'ayons pas encore étudié la technologie flexbox, nous allons faire
une petite parenthèse en nous servant de flexbox pour transformer les contenus en
conteneurs.

9782340-035294_001_224.indd 189782340-035294_001_224.indd 18 19/09/2019 13:3819/09/2019 13:38

Le conteneur et ses propriétés 19

Pour cela, nous allons donner une classe supplémentaire à nos contenus et nous
appellerons cette nouvelle classe flexbox.
<div id="grille">

<div class="un flexbox">un</div>
<div class="deux flexbox">deux</div>
<div class="trois flexbox">trois</div>
<div class="quatre flexbox">quatre</div>
<div class="cinq flexbox">cinq</div>
<div class="six flexbox">six</div>

</div>

Dans notre feuille de style, nous allons ajouter cette nouvelle classe et lui donner la
propriété display, mais cette fois ce ne sera pas la valeur grid mais la valeur flex.
Sans entrer dans le détail de la technologie flexbox que nous étudierons dans la
deuxième partie de ce livre, le fait de donner la propriété display: flex à la classe
flexbox fait que tous les éléments HTML qui possèdent cette classe deviendront
des conteneurs.
A cette classe flexbox, nous allons ordonner que les éléments HTML soient
centrés, qu'ils aient une taille de 30 pixels, qu'ils soient écrits en gras, qu'ils aient
un padding de 20 pixels et que la boîte div qui possède cette classe ait une bordure
solide de 1 pixel.
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Nous reviendrons très largement sur la technologie flexbox à la deuxième partie de
ce livre. Comprenez simplement ici que la propriété justify-content va nous
permettre de centrer un texte sur la largeur du nouveau conteneur.

9782340-035294_001_224.indd 199782340-035294_001_224.indd 19 19/09/2019 13:3819/09/2019 13:38

20 Chapitre 2

Voici le résultat que nous obtenons dans un navigateur :

Figure 2-2 : Les contenus deviennent des conteneurs

De ce fait, nous nous retrouvons avec un conteneur qui possède six contenus qui
sont eux-mêmes des conteneurs.

2.3. Création de colonnes
Revenons à notre boîte div à qui nous avons donné pour identifiant le nom grille.
Au niveau CSS, nous en avons fait un conteneur puisque nous lui avons donné la
propriété display à qui nous avons donné la valeur grid.
De ce fait, nous pouvons maintenant accéder à la technologie grid pour ce
conteneur. Donc nous allons pouvoir mettre en place une grille CSS.
Une grille est naturellement constituée de deux choses : des lignes et des colonnes.
Ici nous allons voir comment créer des colonnes grâce à une nouvelle propriété
CSS. Cette nouvelle propriété se nomme grid-template-columns. Elle attend des
valeurs pour chaque colonne créée. Par exemple si on veut créer deux colonnes, on
écrira deux valeurs. Chaque valeur correspondra à la largeur de la colonne ainsi
créée.
Si on souhaite créer deux colonnes de 200 pixels chacune, nous allons alors ajouter
cette nouvelle propriété à l'identifiant grille en lui donnant pour valeur 200px et
200px.
#grille {

display: grid;
grid-template-columns: 200px 200px;

}

Ceci aura pour conséquence de détruire le comportement de type bloc des
contenus.

9782340-035294_001_224.indd 209782340-035294_001_224.indd 20 19/09/2019 13:3819/09/2019 13:38

Le conteneur et ses propriétés 21

Voyons le résultat obtenu dans un navigateur :

Figure 2-3 : Mise en place des colonnes

Ici on se retrouve avec deux colonnes de 200 pixels chacune. Cela signifie que
notre conteneur grille possède une première colonne de 200 pixels de large et une
deuxième colonne de 200 pixels de large.

Nous aurions pu utiliser le pourcentage comme unité de mesure. Par exemple, au
lieu de donner 200 pixels de large à nos deux colonnes, nous aurions pu leur
donner pour valeur 50%. Elles auraient alors occupé chacune 50% de la largeur du
conteneur.
Voici le code CSS :
#grille {

display: grid;
grid-template-columns: 50% 50%;

}

Le résultat obtenu dans un navigateur sera celui-ci :

Figure 2-4 : colonnes gérées en pourcentage

Il est tout à fait possible de mélanger les unités de mesure. Par exemple, on peut
donner une valeur de 200 pixels pour la première colonne et une valeur de 50%
pour la seconde colonne. Comme ceci
#grille {

display: grid;
grid-template-columns: 200px 50%;

}

9782340-035294_001_224.indd 219782340-035294_001_224.indd 21 19/09/2019 13:3819/09/2019 13:38

22 Chapitre 2

Voici le résultat de ce code dans un navigateur :

Figure 2-5 : Plusieurs unités de valeur

Si nous voulions obtenir trois colonnes, vous avez compris qu'il nous suffit
d'inscrire trois valeurs à la propriété grid-template-columns. Comme ceci :
#grille {

display: grid;
grid-template-columns: 200px 300px 200px;

}

Voici le résultat obtenu dans un navigateur :

Figure 2-6 : Création de trois colonnes

Ici la première colonne fait 200 pixels de large, la seconde 300 pixels de large et
enfin la troisième 200 pixels de large.

Pour conclure sur la création de colonnes, à chaque fois que nous voulons créer une
nouvelle colonne, il suffit tout simplement de donner sa largeur en pixel ou en
pourcentage, dans la propriété grid-template-columns.
Nous verrons un peu plus loin dans ce livre, qu'il existe une nouvelle unité de
mesure qui a été créée spécialement pour les grilles CSS.

2.4. Gestion de la hauteur des lignes
Contrairement aux colonnes dont on défini le nombre, les lignes sont gérées tout
autrement. En fait, le nombre de lignes est en relation direct avec le nombre de
colonnes, suivant la quantité de contenus.
Bien que nous ne puissions pas définir le nombre de lignes, nous pouvons
cependant intervenir sur la hauteur de ces lignes. Pour cela, le CSS met à notre
disposition la propriété grid-template-rows.

9782340-035294_001_224.indd 229782340-035294_001_224.indd 22 19/09/2019 13:3819/09/2019 13:38

Le conteneur et ses propriétés 23

Nous conservons le même code HTML :
<div id="grille">

<div class="un flexbox">un</div>
<div class="deux flexbox">deux</div>
<div class="trois flexbox">trois</div>
<div class="quatre flexbox">quatre</div>
<div class="cinq flexbox">cinq</div>
<div class="six flexbox">six</div>

</div>

Concernant le code CSS, nous demandons à obtenir deux colonnes :
#grille {

display: grid;
grid-template-columns: 200px 300px;

}
.un {

background-color: #fcf;
}
.deux {

background-color: #f9f;
}
.trois {

background-color: #f6f;
}
.quatre {

background-color: #fc9;
}
.cinq {

background-color: #fc6;
}
.six {

background-color: #f96;
}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;

9782340-035294_001_224.indd 239782340-035294_001_224.indd 23 19/09/2019 13:3919/09/2019 13:39

24 Chapitre 2

font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

La conséquence de ce code est que l'on obtient 3 lignes car le nombre de lignes est
la conséquence du nombre de colonnes par rapport au nombre de contenus.

Figure 2-7 : Obtention de 2 colonnes et 3 lignes

Afin de pouvoir intervenir sur la hauteur des lignes, il nous suffit d'ajouter notre
nouvelle propriété CSS grid-template-rows à notre conteneur nommé grille, et de
lui donner une hauteur pour chacune des lignes.
Par exemple, nous pouvons donner une hauteur de 200 pixels à la première ligne
#grille {

display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 200px;

}

Voici le résultat obtenu dans un navigateur :

Figure 2-8 : Modification de la hauteur de la première ligne

La première ligne fait 200 pixels de haut et uniquement la première ligne. Les
autres lignes n'ont pas été modifiées.
Si on souhaite modifier la hauteur de la seconde ligne, on rajoute une nouvelle
valeur après la première.

9782340-035294_001_224.indd 249782340-035294_001_224.indd 24 19/09/2019 13:3919/09/2019 13:39

Le conteneur et ses propriétés 25

Ici nous donnons une hauteur de 200 pixels à la première ligne et une hauteur de
100 pixels à la seconde ligne.
#grille {

display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 200px 100px;

}

Voici le résultat de ce nouveau code :

Figure 2-9 : 200px pour la 1ère ligne et 100px pour la 2ème

Ici nous avons géré les hauteurs de lignes en pixel, il est également possible de les
gérer en pourcentage. Cependant attention, pour pouvoir gérer des hauteurs de
lignes en pourcentage, il nous faut donner une hauteur au conteneur.
Voyons tout de suite un exemple pour bien comprendre. Nous allons définir une
hauteur de 50% pour la première ligne. Nous laissons la hauteur de 100 pixels pour
la seconde ligne.
#grille {

display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 50% 100px;

}

Voici le résultat de ce code CSS :

Figure 2-10 : Gestion de la 1ère ligne de pourcentage

Nous pouvons voir que le fait d'avoir passé la hauteur de la première ligne en
pourcentage n'a eu aucun effet. Pour que la hauteur en pourcentage puisse
fonctionner, nous devons donner une hauteur au conteneur.

9782340-035294_001_224.indd 259782340-035294_001_224.indd 25 19/09/2019 13:3919/09/2019 13:39

26 Chapitre 2

Ici nous allons donner une hauteur de 600 pixels à notre conteneur :
#grille {

display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 50% 100px;
height: 600px;

}

Voici le résultat obtenu dans un navigateur :

Figure 2-11 : Hauteur donnée au conteneur

Voici l'explication de ce résultat. Le conteneur possède une hauteur de 600 pixels,
la première ligne occupe 50% de la hauteur du conteneur, c'est-à-dire 300 pixels.
La deuxième ligne occupe 100 pixels de haut. Il reste donc 200 pixels à combler
pour atteindre les 600 pixels de haut du conteneur, c'est précisément la hauteur de
la troisième ligne.
Si nous ne souhaitons pas que la troisième ligne occupe la totalité de la hauteur
restante, il nous suffit alors de lui donner une valeur.
#grille {

display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 50% 100px 150px;
height: 600px;

}

Nous avons vu qu'en donnant une hauteur au conteneur et en ne donnant aucune
hauteur à la troisième ligne, celle-ci occupait alors la hauteur restante. Comment

9782340-035294_001_224.indd 269782340-035294_001_224.indd 26 19/09/2019 13:3919/09/2019 13:39

Le conteneur et ses propriétés 27

faire pour que ce soit la deuxième ligne qui occupe la hauteur restante et non la
troisième ? Il suffit tout simplement de donner la valeur auto à la deuxième ligne.
#grille {

display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 50% auto 100px;
height: 600px;

}

Voici le résultat obtenu dans un navigateur :

Figure 2-12 : Passage en auto de la 2ème ligne

Voici l'explication de ce résultat. Le conteneur possède une hauteur de 600 pixels,
la première ligne occupe 50% de la hauteur du conteneur, c'est-à-dire 300 pixels.
La troisième ligne occupe 100 pixels de haut. Il reste donc 200 pixels à combler
pour atteindre les 600 pixels de haut du conteneur, c'est précisément la hauteur de
la deuxième ligne grâce à la valeur auto.

Il est également possible d'utiliser la valeur auto pour gérer la largeur des colonnes.
Par exemple, si nous voulons définir une première colonne de 200 pixels, une
troisième colonne de 300 pixels et que la seconde colonne remplisse toute la
largeur restante, il suffit de passer cette deuxième colonne en valeur auto.
#grille {

display: grid;
grid-template-columns: 200px auto 300px;

}

9782340-035294_001_224.indd 279782340-035294_001_224.indd 27 19/09/2019 13:3919/09/2019 13:39

28 Chapitre 2

Voici le résultat obtenu dans un navigateur :

Figure 2-13 : Deuxième colonne en auto

Nous constatons que la deuxième colonne remplit tout l'espace restant du fait
qu'elle a pour valeur auto.

2.5. Les gouttières
Jusqu'à présent nous avons appris à mettre en place des colonnes, à gérer leur
largeur et à gérer la hauteur des lignes. Nous allons maintenant voir comment
espacer les différentes lignes et les différentes colonnes, car pour le moment elles
sont collées les unes aux l'autres. En clair, nous allons apprendre à mettre en place
des gouttières afin d'espacer les différentes boîtes.
CSS met à notre disposition une propriété qui va nous permettre de pouvoir
installer un espace, une gouttière entre les différentes colonnes. Cette propriété se
nomme grid-column-gap. Elle sera à placer dans les propriétés CSS du conteneur.
Pour notre exemple, nous allons définir une gouttière entre les colonnes de 10
pixels.
#grille {

display: grid;
grid-template-columns: 200px 100px 300px;
grid-column-gap: 10px;

}

Voici le résultat obtenu dans un navigateur :

Figure 2-14 : Mise en place d'une gouttière entre les colonnes

Les différentes colonnes sont éloignées de 10 pixels les unes des autres. En terme
de largeur occupée, nous avons la première colonne qui occupe 200 pixels, suivie
d'une gouttière qui occupe 10 pixels, suivie d'une seconde colonne qui occupe 100
pixels, suivie d'une nouvelle gouttière qui occupe 10 pixels et enfin suivie d'une
troisième colonne qui occupe 300 pixels. Soit une largeur totale de 620 pixels.

9782340-035294_001_224.indd 289782340-035294_001_224.indd 28 19/09/2019 13:3919/09/2019 13:39

Le conteneur et ses propriétés 29

Nous pouvons en faire de même avec les lignes. Il nous est possible de mettre en
place des gouttières entre les différentes lignes. Pour cela, nous avons à notre
disposition la propriété grid-row-gap. Cette propriété est également à placer dans
les propriétés CSS du conteneur.
En poursuivant avec notre exemple, nous allons ajouter une gouttière de 20 pixels
entre les différentes lignes. Ici il n'y a que deux lignes
#grille {

display: grid;
grid-template-columns: 200px 100px 300px;
grid-column-gap: 10px;
grid-row-gap: 20px;

}

Voici le résultat obtenu dans un navigateur :

Figure 2-15 : Mise en place d'une gouttière entre les lignes

Ici les lignes sont éloignées de 20 pixels les unes des autres.

Nous avons également la possibilité de mettre en place une gouttière globale, c'est-
à-dire une gouttière qui aura la même taille partout, aussi bien entre les colonnes
qu'entre les lignes. La propriété CSS qui nous permet cela est la propriété grid-gap.
Cette propriété est à placer dans les propriétés CSS du conteneur.
En reprenant notre exemple, nous allons mettre en place une gouttière de 20 pixels
de large tout autour des lignes et des colonnes.
#grille {

display: grid;
grid-template-columns: 200px 100px 300px;
grid-gap: 20px;

}

9782340-035294_001_224.indd 299782340-035294_001_224.indd 29 19/09/2019 13:3919/09/2019 13:39

30 Chapitre 2

Voici le résultat obtenu dans un navigateur :

Figure 2-16 : Mise en place d'une gouttière générale

Ici les lignes et les colonnes sont toutes éloignées de 20 pixels.
En réalité, la propriété grid-gap est ce que l'on appelle une super propriété car elle
permet de remplacer les deux propriétés grid-row-gap et grid-column-gap. Pour
cela, il suffit tout simplement de lui donner deux valeurs. Une première valeur pour
définir une gouttière entre les lignes et une deuxième valeur pour définir une
gouttière entre les colonnes.
En reprenant notre exemple, nous allons définir une gouttière de 20 pixels entre les
lignes et une gouttière de 10 pixels entre les colonnes.
#grille {

display: grid;
grid-template-columns: 200px 100px 300px;
grid-gap: 20px 10px;

}

Voici le résultat obtenu dans un navigateur :

Figure 2-17 : Gouttière de 20px entre les lignes et 10px entre les colonnes

2.6. Une nouvelle unité de mesure
Nous conservons toujours le même code HTML et au niveau CSS nous allons
définir une couleur de fond noire pour notre fenêtre de navigateur et une couleur de
fond blanche pour notre conteneur. Nous allons réaliser une grille constituée de
deux colonnes d'une largeur de 50% chacune, séparées par une gouttière de 20
pixels. Nous donnerons une hauteur de 100 pixels à nos trois lignes. Le conteneur
fera 600 pixels de large et 400 pixels de haut. Voici le code CSS complet :
body {

background-color: #000;

9782340-035294_001_224.indd 309782340-035294_001_224.indd 30 19/09/2019 13:3919/09/2019 13:39

Le conteneur et ses propriétés 31

}
#grille {

display: grid;
grid-template-columns: 50% 50%;
grid-template-rows: 100px 100px 100px;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;

}
.un {

background-color: #fcf;
}
.deux {

background-color: #f9f;
}
.trois {

background-color: #f6f;
}
.quatre {

background-color: #fc9;
}
.cinq {

background-color: #fc6;
}
.six {

background-color: #f96;
}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

9782340-035294_001_224.indd 319782340-035294_001_224.indd 31 19/09/2019 13:3919/09/2019 13:39

32 Chapitre 2

Voici le résultat de ce code :

Figure 2-18 : Deux colonnes de 50% chacune avec une gouttière de 20px

Quel constat faisons-nous ici ? La grille sort du conteneur. Que s'est-il passé ?
Précédemment nous avons compté la largeur qu'occupait la grille dans son
conteneur. Nous allons refaire le même calcul pour cette grille. Ici nous avons un
conteneur qui occupe 600 pixels de large. A l'intérieur de ce conteneur nous avons
placé une grille de deux colonnes. La première colonne occupe 50% de l'espace qui
lui est alloué, à savoir 50% de la largeur du conteneur, soit 300 pixels exactement.
Ensuite nous avons placé une gouttière de 20 pixels de large, puis une deuxième
colonne de 50% de large, soit 300 pixels de large comme la première colonne. En
additionnant le tout, nous obtenons 620 pixels. Or le conteneur fait 600 pixels de
large, donc la grille dépasse de 20 pixels de son conteneur. Comment faire pour que
la grille ne sorte pas de son conteneur sans devoir pour autant gérer les largeurs en
pixels ? C'est là que les créateurs de grid ont été très malins ! Ils ont inventé une
nouvelle unité de mesure, les fractions. De ce fait, nous ne réagissons plus en terme
de pourcentage mais en terme de fraction d'écran.
Reprenons notre exemple précédent et remplaçons la largeur des colonnes de 50%
en une fraction d'écran, comme ceci
#grille {

display: grid;
grid-template-columns: 1fr 1fr;
grid-template-rows: 100px 100px 100px;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;

}

9782340-035294_001_224.indd 329782340-035294_001_224.indd 32 19/09/2019 13:3919/09/2019 13:39

Le conteneur et ses propriétés 33

Observons le résultat obtenu dans un navigateur :

Figure 2-19 : Deux colonnes de 1fr chacune

Cette fois, la grille ne sort plus de son conteneur et nous n'avons pas eu besoin
d'avoir recours aux pixels. L'unité de mesure fr nous permet de gérer nos colonnes
en unité de fraction d'écran. Ainsi la largeur est automatiquement prise en compte
et calculée par l'interpréteur CSS afin d'occuper de façon proportionnelle l'espace
qui leur est alloué.
Ainsi, nous pouvons très facilement définir que la deuxième colonne occupe deux
fois plus d'espace que la première colonne grâce à l'unité de mesure fr.
#grille {

display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 100px 100px 100px;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;

}

Voici le résultat de ce nouveau code :

Figure 2-20 : Une colonne de 1fr et une colonne de 2fr

9782340-035294_001_224.indd 339782340-035294_001_224.indd 33 19/09/2019 13:3919/09/2019 13:39

34 Chapitre 2

Grâce à cette nouvelle unité de mesure, la deuxième colonne occupe précisément
deux fois plus d'espace que la première colonne au sein de leur conteneur. Nous
n'avons pas eu besoin de réaliser des calculs afin d'arriver à ce résultat. Tout s'est
fait tout seul et de façon ultra précise. La première colonne occupe 1 fraction et la
deuxième occupe 2 fractions de l'espace qui leur est alloué au sein du conteneur.

On peut également se servir de cette nouvelle unité de mesure pour les lignes.
Reprenons notre exemple précédent et demandons-lui que les trois lignes occupent
1 fraction de la hauteur qui leur est allouée au sein du conteneur dont la hauteur a
été définie à 400 pixels.
#grille {

display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 1fr 1fr 1fr;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;

}

Voici le résultat obtenu dans un navigateur :

Figure 2-21 : Trois lignes de 1fr chacune

Il est à préciser que le résultat obtenu ici concernant la hauteur des lignes par
rapport à la hauteur du conteneur, est un résultat que l'on obtient par défaut. C'est-
à-dire, sans besoin de devoir préciser une hauteur de ligne d'une fraction chacune.
En clair, en retirant la propriété grid-template-rows: 1fr 1fr 1fr, nous obtiendrons
exactement le même résultat. En revanche, ce qui est intéressant avec les unités de
fraction pour calculer les hauteurs de ligne, c'est de les utiliser lorsque l'on
souhaite, par exemple, obtenir une ligne deux fois plus haute que les autres. Voyons
tout de suite un exemple pour bien comprendre.

9782340-035294_001_224.indd 349782340-035294_001_224.indd 34 19/09/2019 13:3919/09/2019 13:39

Le conteneur et ses propriétés 35

Toujours en conservant notre exemple, nous allons ici demander à obtenir une
deuxième ligne deux fois plus haute que la première et la dernière ligne.
#grille {

display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 1fr 2fr 1fr;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;

}

Le résultat de ce code est le suivant :

Figure 2-22 : Une ligne de 2fr avec deux lignes de 1fr

2.7. La fonction repeat
La fonction repeat va nous permettre de pouvoir répéter un certain nombre de fois
la création de colonnes de même largeur ou bien de lignes de même hauteur.
Poursuivons avec notre exemple. Nous allons demander à créer trois colonnes de
1fr de large chacune.
#grille {

display: grid;
grid-template-columns: 1fr 1fr 1fr;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;

}

9782340-035294_001_224.indd 359782340-035294_001_224.indd 35 19/09/2019 13:3919/09/2019 13:39

36 Chapitre 2

Nous obtiendrons le résultat suivant :

Figure 2-23 : 3 lignes de 1fr chacune

Il est possible d'obtenir le même résultat en simplifiant quelque peu notre code CSS
grâce à la fonction repeat. La fonction repeat va prendre deux arguments. Le
premier argument correspond au nombre de colonnes que l'on souhaite répéter, le
second argument correspond à la largeur que l'on souhaite donner à ces colonnes.
Chaque argument est séparé par une virgule.
En reprenant l'exemple précédent, en premier argument nous entrerons le chiffre 3
pour obtenir 3 colonnes et en deuxième argument nous entrerons la valeur 1fr pour
donner la largeur de nos 3 colonnes. Voici le code CSS
#grille {

display: grid;
grid-template-columns: repeat(3,1fr);
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;

}

Si nous souhaitons également donner une hauteur de ligne équivalente à chacune
des 2 lignes créées, nous pouvons aussi utiliser la fonction repeat. Par exemple
pour obtenir une hauteur de ligne équivalente de 150 pixels.
#grille {

display: grid;
grid-template-columns: repeat(3,1fr);
grid-template-rows: repeat(2,150px);
grid-column-gap: 20px;
background-color: #fff;
width: 600px;

9782340-035294_001_224.indd 369782340-035294_001_224.indd 36 19/09/2019 13:3919/09/2019 13:39

Le conteneur et ses propriétés 37

height: 400px;
}

Nous obtiendrons alors 2 lignes de 150 pixels de haut chacune :

Figure 2-24 : 2 lignes de 150px de haut

Il est également possible de réaliser des répétitions multiples. C'est-à-dire que nous
pouvons demander à répéter deux fois une colonne de 50px de large et une colonne
de 100px de large. Voyons à quoi va ressembler un tel code CSS, toujours en
utilisant l'exemple précédent.
#grille {

display: grid;
grid-template-columns: repeat(2,50px 100px);
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;

}

Voici le résultat obtenu dans un navigateur :

Figure 2-25 : 2 colonnes de 50px et 100px répétées 2 fois

9782340-035294_001_224.indd 379782340-035294_001_224.indd 37 19/09/2019 13:3919/09/2019 13:39

9782340-035294_001_224.indd 389782340-035294_001_224.indd 38 19/09/2019 13:3919/09/2019 13:39

Chapitre 3
Les contenus et leurs propriétés

3.1. Les lignes de grille verticale
Au début de ce livre, nous avons parlé des lignes de grille. Il s'agit de lignes qui se
trouvent entre les différents contenus.

Figure 3-1 : Lignes de grille verticale

La figure 3-1 nous montre qu'il y a 3 colonnes et donc 4 lignes de grille.

Nous allons reprendre le même code HTML que nous utilisons depuis le début de
ce livre.
<div id="grille">

<div class="un flexbox">un</div>
<div class="deux flexbox">deux</div>
<div class="trois flexbox">trois</div>
<div class="quatre flexbox">quatre</div>
<div class="cinq flexbox">cinq</div>
<div class="six flexbox">six</div>

</div>

9782340-035294_001_224.indd 399782340-035294_001_224.indd 39 19/09/2019 13:3919/09/2019 13:39

40 Chapitre 3

Au niveau CSS, nous allons demander à afficher 3 colonnes de 1fr chacune au sein
d'un conteneur de 600 pixels de large. Les colonnes seront espacées par une
gouttière de 20 pixels de large.
body {

background-color: #000;
}
#grille {

display: grid;
grid-template-columns: repeat(3,1fr);
grid-column-gap: 20px;
background-color: #fff;
width: 600px;

}
.un {

background-color: #fcf;
}
.deux {

background-color: #f9f;
}
.trois {

background-color: #f6f;
}
.quatre {

background-color: #fc9;
}
.cinq {

background-color: #fc6;
}
.six {

background-color: #f96;
}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;

9782340-035294_001_224.indd 409782340-035294_001_224.indd 40 19/09/2019 13:3919/09/2019 13:39

Les contenus et leurs propriétés 41

border: 1px solid #333;
}

Voici le résultat dans un navigateur

Figure 3-2 : 3 colonnes de 1fr de large espacées de 20px

Nous voulons à présent que la boîte numéro 1 occupe les 2 premières colonnes.
Pour cela nous allons utiliser des propriétés CSS qui seront à placer au sein des
propriétés CSS de la boîte numéro 1. La première propriété CSS se nomme grid-
column-start. Elle prendra pour valeur la ligne de grille verticale d'où débutera la
boîte numéro 1. Ici ce sera la ligne de grille verticale numéro 1.
La seconde propriété CSS sera grid-column-end. Elle prendra pour valeur la ligne
de grille verticale d'où s'arrêtera la boîte numéro 1. Ici ce sera la ligne de grille
verticale numéro 3.
Voici les propriétés CSS à placer pour la boîte numéro 1.
.un {

background-color: #fcf;
grid-column-start: 1;
grid-column-end: 3;

}

Voici le résultat dans un navigateur

Figure 3-3 : La boîte numéro 1 occupe 2 colonnes

Si on récapitule, la boîte numéro 1 commence à la ligne de grille numéro 1 et elle
se termine à la ligne de grille numéro 3.
Si nous voulions que la boîte numéro 1 occupe toute la largeur de la première ligne,
alors nous donnerions la valeur 4 à la propriété grid-column-end. Comme ceci
.un {

background-color: #fcf;

9782340-035294_001_224.indd 419782340-035294_001_224.indd 41 19/09/2019 13:3919/09/2019 13:39

42 Chapitre 3

grid-column-start: 1;
grid-column-end: 4;

}

Voici le résultat obtenu dans un navigateur

Figure 3-4 : La boîte numéro 1 occupe toute la 1ère ligne

Grâce aux propriétés grid-column-start et grid-column-end, nous pouvons
positionner n'importe quelle boîte où on veut sur la grille. Par exemple, nous allons
demander que la boîte numéro 3 occupe les 2 dernières colonnes. Nous allons alors
ajouter les nouvelles propriétés CSS à la boîte numéro 3.
.trois {

background-color: #f6f;
grid-column-start: 2;
grid-column-end: 4;

}

Voici le résultat obtenu dans un navigateur

Figure 3-5 : La boîte numéro 3 occupe les 2 dernières colonnes

3.2. Les lignes de grille horizontale
Ce que nous avons vu précédemment concernant les lignes de grille liées aux
colonnes, nous pouvons l'appliquer de la même façon pour les lignes de grille liées
aux lignes. Nous utiliserons alors les deux propriétés CSS suivantes, grid-row-start
et grid-row-end en nous servant des lignes de grille horizontale.

9782340-035294_001_224.indd 429782340-035294_001_224.indd 42 19/09/2019 13:3919/09/2019 13:39

Les contenus et leurs propriétés 43

Figure 3-6 : Lignes de grille horizontale

La figure 3-6 nous montre qu'il y a 3 lignes et donc 4 lignes de grille.

Nous conservons le même code source HTML et nous reprenons le code CSS
suivant
body {

background-color: #000;
}
#grille {

display: grid;
grid-template-columns: repeat(3,1fr);
grid-gap: 20px;
background-color: #fff;
width: 600px;

}
.un {

background-color: #fcf;
grid-column-start: 1;
grid-column-end: 4;

}
.deux {

background-color: #f9f;
}

9782340-035294_001_224.indd 439782340-035294_001_224.indd 43 19/09/2019 13:3919/09/2019 13:39

44 Chapitre 3

.trois {
background-color: #f6f;
grid-column-start: 2;
grid-column-end: 4;

}
.quatre {

background-color: #fc9;
}
.cinq {

background-color: #fc6;
}
.six {

background-color: #f96;
}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Nous obtenons le résultat suivant

Figure 3-7 : Identique à la figure 3-5 plus une gouttière entre les lignes

Nous voulons à présent que la boîte numéro 2 occupe les deux dernières lignes.
Nous allons pour cela utiliser la propriété CSS grid-row-start à qui nous allons
donner la valeur 2 et la propriété grid-row-end à qui nous allons donner la valeur 4.
Nous appliquerons ces propriétés aux propriétés CSS de la boîte numéro 2.

9782340-035294_001_224.indd 449782340-035294_001_224.indd 44 19/09/2019 13:3919/09/2019 13:39

Les contenus et leurs propriétés 45

Voici le code CSS pour la boîte numéro 2
.deux {

background-color: #f9f;
grid-row-start: 2;
grid-row-end: 4;

}

Ceci nous donnera le résultat suivant dans un navigateur

Figure 3-8 : La boîte numéro 2 occupe 2 lignes

3.3. Le mot-clé span
Il existe une autre façon de gérer la largeur ou la hauteur d'un contenu en utilisant
le mot-clé span. On lui associe une valeur, cette valeur sera le nombre de colonnes
ou de lignes que devra alors occuper la boîte.
Si nous reprenons exactement le même code CSS que précédemment afin d'obtenir
le résultat de la figure 3-8, au niveau des propriétés CSS de la boîte numéro 3 nous
avions ceci
.trois {

background-color: #f6f;
grid-column-start: 2;
grid-column-end: 4;

}

Cela signifie que la boîte numéro 3 débute à la ligne de grille verticale numéro 2 et
s'arrête à la ligne de grille verticale numéro 4. En donnant pour valeur le mot-clé
span à la propriété grid-column-end, nous allons donner le nombre de colonnes
que va alors occuper la boîte numéro 3. Ce nombre de colonnes est 2. Voici le
nouveau code CSS pour la boîte numéro 3 qui nous donnera exactement le même
résultat que précédemment.

9782340-035294_001_224.indd 459782340-035294_001_224.indd 45 19/09/2019 13:3919/09/2019 13:39

46 Chapitre 3

.trois {
background-color: #f6f;
grid-column-start: 2;
grid-column-end: span 2;

}

Voici le résultat

Figure 3-9 : Le résultat est identique à la figure 3-8

Sur le même principe, nous souhaitons que la boîte numéro 2 occupe trois hauteurs
de ligne, nous allons alors modifier son code CSS en utilisant le mot-clé span,
comme ceci
.deux {

background-color: #f9f;
grid-row-start: 2;
grid-row-end: span 3;

}

Voici le résultat de ce nouveau code dans un navigateur

Figure 3-10 : La boîte 2 occupe 3 lignes

Les autres boîtes se rangent automatiquement sur les espaces suivants.

9782340-035294_001_224.indd 469782340-035294_001_224.indd 46 19/09/2019 13:3919/09/2019 13:39

Les contenus et leurs propriétés 47

3.4. Propriétés raccourcies
Il existe une propriété CSS qui permet de réunir les propriétés grid-column-start et
grid-column-end, cette propriété se nomme grid-column. Elle s'utilisera de la
même façon que les deux autres et elle prendra pour valeurs le numéro de la ligne
de grille de départ et le numéro de la ligne de grille d'arrivée. Ou alors elle prendra
pour valeurs le numéro de la ligne de grille de départ et le nombre de colonnes
qu'elle devra occuper.
Reprenons notre code HTML
<div id="grille">

<div class="un flexbox">un</div>
<div class="deux flexbox">deux</div>
<div class="trois flexbox">trois</div>
<div class="quatre flexbox">quatre</div>
<div class="cinq flexbox">cinq</div>
<div class="six flexbox">six</div>

</div>

Mettons en place une grille de trois colonnes et deux lignes séparées par une
gouttière de 20 pixels.
body {

background-color: #000;
}
#grille {

display: grid;
grid-template-columns: repeat(3,1fr);
grid-gap: 20px;
background-color: #fff;
width: 600px;

}
.un {

background-color: #fcf;
}
.deux {

background-color: #f9f;
}
.trois {

background-color: #f6f;
}

9782340-035294_001_224.indd 479782340-035294_001_224.indd 47 19/09/2019 13:3919/09/2019 13:39

48 Chapitre 3

.quatre {
background-color: #fc9;

}
.cinq {

background-color: #fc6;
}
.six {

background-color: #f96;
}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Le résultat de ce code sera le suivant

Figure 3-11 : Une grille de 3 colonnes et 2 lignes

Nous allons ici demander que la boîte numéro 1 occupe les 2 premières colonnes.
Nous allons pour cela utiliser la propriété CSS raccourcie grid-column.
Voici le code CSS pour la boîte numéro 1 pour obtenir le résultat souhaité.
.un {

background-color: #fcf;
grid-column: 1 / span 2;

}

La première valeur correspond à la première ligne de grille verticale, la seconde
valeur correspond à la largeur que l'on a souhaité donner à la boîte numéro 1. Il est
à préciser que nous devons utiliser un slash pour séparer ces deux valeurs.

9782340-035294_001_224.indd 489782340-035294_001_224.indd 48 19/09/2019 13:3919/09/2019 13:39

Les contenus et leurs propriétés 49

Voici le résultat de ce code dans un navigateur

Figure 3-12 : Une seule propriété pour définir le positionnement de la boîte 1

A la place du mot-clé span, nous aurions pu utiliser le numéro de la grille verticale
de fin.
.un {

background-color: #fcf;
grid-column: 1 / 3;

}

Le résultat sera identique au résultat obtenu à la figure 3-12. Il est à préciser que là
aussi, les deux valeurs seront à séparer par un slash.

Ce qui est vrai pour les colonnes et également vrai pour les lignes. Nous pouvons
donc utiliser une propriété CSS qui permet de réunir les propriétés grid-row-start
et grid-row-end, cette propriété se nomme grid-row. Elle s'utilisera de la même
façon que les deux autres et elle prendra pour valeurs le numéro de la ligne de
grille de départ et le numéro de la ligne de grille d'arrivée. Ou alors elle prendra
pour valeurs le numéro de la ligne de grille de départ et le nombre de lignes qu'elle
devra occuper.
En reprenant le même code que précédemment, nous allons demander que la boîte
numéro 3 occupe deux hauteurs de ligne.
Voici le code CSS pour la boîte numéro 2
.trois {

background-color: #f6f;
grid-row: 2 / 4;

}

Nous aurions également pu écrire le code suivant en utilisant le mot-clé span
.trois {

background-color: #f6f;
grid-row: 2 / span 2;

}

9782340-035294_001_224.indd 499782340-035294_001_224.indd 49 19/09/2019 13:3919/09/2019 13:39

50 Chapitre 3

Le résultat sera identique

Figure 3-13 : Une seule propriété pour définir le positionnement de la boîte 3

9782340-035294_001_224.indd 509782340-035294_001_224.indd 50 19/09/2019 13:3919/09/2019 13:39

Chapitre 4
Autres propriétés

4.1. Changer le sens d'affichage
Nous allons voir ici qu'il est possible de changer très facilement l'ordre d'affichage
des différentes boîtes.
Nous allons reprendre le même code HTML que nous utilisons depuis le début.
<div id="grille">

<div class="un flexbox">un</div>
<div class="deux flexbox">deux</div>
<div class="trois flexbox">trois</div>
<div class="quatre flexbox">quatre</div>
<div class="cinq flexbox">cinq</div>
<div class="six flexbox">six</div>

</div>

Au niveau CSS, nous allons demander à afficher nos différentes boîtes div sur trois
colonnes séparées par une gouttière de 20 pixels.
body {

background-color: #000;
}
#grille {

display: grid;
grid-template-columns: repeat(3,1fr);
grid-column-gap: 20px;
background-color: #fff;
width: 600px;

}
.un {

background-color: #fcf;
}
.deux {

background-color: #f9f;
}
.trois {

9782340-035294_001_224.indd 519782340-035294_001_224.indd 51 19/09/2019 13:3919/09/2019 13:39

52 Chapitre 4

background-color: #f6f;
}
.quatre {

background-color: #fc9;
}
.cinq {

background-color: #fc6;
}
.six {

background-color: #f96;
}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Voici le résultat obtenu dans un navigateur

Figure 4-1 : Les 6 boîtes sont alignées sur 3 colonnes

On remarque que le sens de disposition des différentes boîtes se fait de gauche à
droite et de haut en bas, comme le sens de lecture. Nous avons la possibilité de
modifier ce sens. Au lieu que les boîtes soient affichées de gauche à droite et de
haut en bas, nous pouvons les afficher de haut en bas et de gauche à droite. Pour
cela nous allons utiliser la propriété grid-auto-flow. Cette propriété a pour valeur
par défaut la valeur row. Row signifie ligne en français. Cela se traduit bien par un
affichage en ligne. Si nous souhaitions un affichage en colonne, nous devrions
alors donner la valeur column. Cependant attention, pour que cela fonctionne nous
devons également placer la propriété grid-template-rows.
Nous allons modifier le sens d'affichage de nos boîtes div. La propriété grid-auto-
flow sera à utiliser au sein des propriétés du conteneur.

9782340-035294_001_224.indd 529782340-035294_001_224.indd 52 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 53

Voici le nouveau code CSS du conteneur
#grille {

display: grid;
grid-template-columns: repeat(3,1fr);
grid-template-rows: repeat(2,1fr);
grid-auto-flow: column;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;

}

Voici le résultat obtenu dans un navigateur

Figure 4-2 : Ordre d'affichage des boîtes en colonne

Cette fois les différentes boîtes div sont affichées de haut en bas et de gauche à
droite.

4.2. Créer une colonne virtuelle
En cas de besoin, il est possible de créer une nouvelle colonne même si celle-ci n'a
pas été déclarée au préalable dans la propriété grid-template-columns.
Afin de comprendre le fonctionnement de cet effet, nous allons reprendre le même
code HTML que celui que nous utilisons depuis le début de ce livre. Au niveau
CSS, nous allons demander à afficher les six boîtes sur trois colonnes de 1fr
chacune. Le conteneur fera 600 pixels de large.
body {

background-color: #000;
}
#grille {

display: grid;
grid-template-columns: repeat(3,1fr);
background-color: #fff;
width: 600px;

}

9782340-035294_001_224.indd 539782340-035294_001_224.indd 53 19/09/2019 13:3919/09/2019 13:39

54 Chapitre 4

.un {
background-color: #fcf;

}
.deux {

background-color: #f9f;
}
.trois {

background-color: #f6f;
}
.quatre {

background-color: #fc9;
}
.cinq {

background-color: #fc6;
}
.six {

background-color: #f96;
}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Voici le résultat obtenu dans un navigateur

Figure 4-3 : 6 boîtes alignées sur 3 colonnes

La boîte numéro 3 occupe 1 largeur de colonne, comme les cinq autres boîtes.
Maintenant nous souhaiterions que la boîte numéro 3 occupe 2 largeurs de colonne
mais sans modifier l'emplacement des autres boîtes. C'est-à-dire que l'on rajouterait

9782340-035294_001_224.indd 549782340-035294_001_224.indd 54 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 55

une nouvelle colonne spécialement pour la boîte numéro 3.
Pour réaliser cela, il nous suffit d'aller dans les propriétés CSS de la boîte numéro 3
et d'ajouter la propriété grid-column comme nous l'avons déjà vu. Les valeurs de la
propriété grid-column pourraient être 3 pour désigner la ligne de grille de départ et
span 2 pour indiquer le nombre de colonnes que devra occuper la boîte numéro 3.
.trois {

background-color: #f6f;
grid-column: 3 / span 2;

}

Voici le résultat obtenu dans un navigateur

Figure 4-4 : On rajoute la propriété grid-column à la boîte numéro 3

On s'aperçoit que cela n'a strictement rien changé. La boîte numéro 3 occupe
toujours 1 seule largeur de colonne et non 2 comme souhaité. Le résultat obtenu est
normal car on a demandé à débuter la boîte numéro 3 à la troisième ligne de grille
puis de l'étendre sur 2 colonnes. Or après la troisième ligne de grille il n'y a qu'une
seule colonne. Pour que cela fonctionne, nous devons alors créer une colonne
virtuelle. Pour cela nous devons utiliser une nouvelle propriété CSS au sein des
propriétés du conteneur. Cette nouvelle propriété se nomme grid-auto-columns.
Elle prendra pour valeur une largeur de colonne, celle que l'on souhaite. Par
exemple, on pourrait demander que la nouvelle colonne virtuelle fasse 100 pixels
de large. Voici le nouveau code CSS du conteneur
#grille {

display: grid;
grid-template-columns: repeat(3,1fr);
grid-auto-columns: 100px;
background-color: #fff;
width: 600px;

}

9782340-035294_001_224.indd 559782340-035294_001_224.indd 55 19/09/2019 13:3919/09/2019 13:39

56 Chapitre 4

Voici le résultat obtenu dans un navigateur

Figure 4-5 : La boîte numéro 3 occupe 2 colonnes

4.3. Créer une ligne virtuelle
Si nous sommes capables de créer des colonnes virtuelles alors nous sommes
capables de créer des lignes virtuelles. C'est ce que nous allons voir ici.
Nous conservons exactement toutes les mêmes propriétés CSS que précédemment.
Nous allons simplement demander que la boîte numéro 4 occupe 2 lignes. Pour
cela nous allons utiliser la propriété grid-row que nous allons appliquer aux
propriétés CSS de la boîte numéro 4. Nous lui donnerons pour valeur le chiffre 2
car il correspond à la deuxième ligne de grille horizontale et la valeur span 2 pour
lui demander d'occuper 2 lignes. Voici le code CSS
.quatre {

background-color: #f9f;
grid-row: 2 / span 2;

}

Comme nous l'avons fait avec les colonnes virtuelles, nous allons ajouter la
propriété grid-auto-rows au conteneur, afin de pouvoir autoriser la création de
lignes virtuelles. Nous lui donnerons pour valeur la hauteur que nous souhaitons
donner aux lignes de grille virtuelles, par exemple 50 pixels.
#grille {

display: grid;
grid-template-columns: repeat(3,1fr);
grid-auto-columns: 100px;
grid-auto-rows: 50px;
background-color: #fff;
width: 600px;

}

9782340-035294_001_224.indd 569782340-035294_001_224.indd 56 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 57

Voici le résultat obtenu dans un navigateur

Figure 4-6 : La boîte numéro 4 occupe 2 lignes

4.4. Application aux balises HTML5
Nous allons voir ici une application de ce que nous avons appris jusqu'à présent.
Nous allons aborder la mise en page d'un site web. Vous allez voir toute la
puissance de la technologie grid.
Nous allons réaliser la mise en page d'un site web simple et classique. Nous allons
placer un header en haut de la page, un footer en bas de la page et entre ces deux
zones, nous allons positionner une barre de navigation à côté d'une zone d'article.
Voilà ci-dessous le résultat que nous souhaitons obtenir.

Figure 4-7 : Résultat souhaité

Au niveau HTML, nous allons mettre en place les balises structurantes du HTML 5
que nous enfermerons dans une boîte à laquelle nous donnerons l'identifiant grille
afin d'en faire un conteneur. C'est à ce conteneur que nous donnerons la
technologie grid qui va nous permettre de mettre en page notre site internet.
Voici le code HTML :
<div id="grille">

<header>HEADER</header>

9782340-035294_001_224.indd 579782340-035294_001_224.indd 57 19/09/2019 13:3919/09/2019 13:39

58 Chapitre 4

 <nav>NAV</nav>
<article>ARTICLE</article>
<footer>FOOTER</footer>

</div>

Maintenant que les balises structurantes du HTML 5 sont en place, nous allons leur
donner une couleur de fond afin de bien pouvoir les distinguer sur une page web.
Pour cela nous créons une feuille de style externe que nous relions à notre
document HTML comme on peut le faire habituellement en utilisant la balise link
qui permet d'inclure des styles CSS à une page web. La balise se place au niveau
des balises meta. Voici le document HTML complet.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<link rel="stylesheet" href="style.css" />
</head>

<body>
<div id="grille">

<header>HEADER</header>
 <nav>NAV</nav>
 <article>ARTICLE</article>
 <footer>FOOTER</footer>
</div>
</body>
</html>

Ici, la feuille de style que nous avons nommée style.css a été placée au même
niveau que notre fichier HTML. Passons à présent à la feuille de style et donnons
une couleur de fond à chaque balise structurante du HTML 5 afin de bien pouvoir
les distinguer sur l'écran d'un navigateur web. Nous en profiterons également pour
neutraliser les marges par défaut du navigateur en plaçant les propriétés margin et
padding à 0 pour le body.
body {

margin: 0;
padding:0;

9782340-035294_001_224.indd 589782340-035294_001_224.indd 58 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 59

}
header {

background-color: #6f0;
}
nav {

background-color: #993;
}
article {

background-color: #c93;
}
footer {

background-color: #f90;
}

Voici le résultat de ce code dans un navigateur web

Figure 4-8 : Une couleur de fond aux balises structurantes du HTML 5

Nous pouvons constater que les balises structurantes du HTML 5 se comportent
comme les boîtes div, à savoir qu'elles ont un comportement de type bloc par
défaut.

Afin que le rendu de nos boîtes soit plus agréable, nous allons ajouter une classe
flexbox à notre feuille de style. La même classe flexbox dont on s'est servi
précédemment.
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Nous allons donc ajouter une classe flexbox à nos balises structurantes.
<div id="grille">

<header class="flexbox">HEADER</header>

9782340-035294_001_224.indd 599782340-035294_001_224.indd 59 19/09/2019 13:3919/09/2019 13:39

60 Chapitre 4

<nav class="flexbox">NAV</nav>
<article class="flexbox">ARTICLE</article>
<footer class="flexbox">FOOTER</footer>

</div>

Voici le résultat dans un navigateur.

Figure 4-9 : Ajout de la classe flexbox

Nous allons à présent nous servir de la technologie grid pour mettre en forme notre
site web. Pour cela nous allons écrire les propriétés CSS de l'identifiant grille. Ce
que l'on veut, c'est obtenir un site avec deux colonnes. Nous en profiterons pour
donner une largeur de 600 pixels et une hauteur de 400 pixels à l'identifiant grille.
Nous centrerons également notre site à l'écran.
Voici le code CSS de l'identifiant grille.
#grille {

display: grid;
grid-template-columns: 1fr 2fr;
width: 600px;
height: 400px;
margin: auto;

}

Voici le résultat obtenu dans un navigateur

Figure 4-10 : Mise en page sur 2 colonnes

9782340-035294_001_224.indd 609782340-035294_001_224.indd 60 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 61

Nous obtenons bien un site mis en page sur deux colonnes. Cependant, ce n'est pas
tout à fait le résultat que nous souhaitons obtenir. En effet, nous voulons
uniquement la nav et l'article sur deux colonnes, pas le header ni le footer. Pour
résoudre ce problème, nous connaissons la propriété grid-column qui va nous
permettre de pouvoir positionner un élément en lui donnant sa ligne de grille de
départ ainsi que le nombre de colonnes qu'elle devra occuper. Nous allons donc
ajouter cette propriété CSS au header ainsi qu'au footer.
header {

background-color: #6f0;
grid-column: 1 / span 2;

}
footer {

background-color: #6f0;
grid-column: 1 / span 2;

}

Voici le résultat obtenu dans un navigateur

Figure 4-11 : Obtention de la mise en page du site souhaité

Et si nous voulons gérer la hauteur des lignes de nos différentes boîtes, il nous
suffit de l'indiquer dans les propriétés CSS du conteneur, comme nous l'avons
appris.
#grille {

display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;

}

9782340-035294_001_224.indd 619782340-035294_001_224.indd 61 19/09/2019 13:3919/09/2019 13:39

62 Chapitre 4

Voici le résultat obtenu dans un navigateur

Figure 4-12 : Gestion des hauteurs de ligne

Nous venons de faire une petite révision de ce que nous avons appris jusqu'à
présent concernant la technologie grid. Il existe une autre façon d'aborder la mise
en page d'un site web toujours en utilisant la technologie grid. La voici.

4.5. Définition des zones
Comme convenu, nous allons voir une nouvelle technique de mise en page d'un site
web. Nous allons conserver le même code HTML que précédemment.
<div id="grille">

<header class="flexbox">HEADER</header>
<nav class="flexbox">NAV</nav>
<article class="flexbox">ARTICLE</article>
<footer class="flexbox">FOOTER</footer>

</div>

Concernant le résultat final voulu, ce sera exactement la même mise en page que
précédemment. A savoir, le header sur une ligne, la nav et l'article sur une
deuxième ligne et enfin le footer sur une troisième ligne.
Nous allons reprendre le même code CSS que précédemment, mais nous retirons
les propriétés grid-column du header et du footer.
body {

margin: 0;
padding:0;

}
#grille {

display: grid;
grid-template-columns: 1fr 2fr;

9782340-035294_001_224.indd 629782340-035294_001_224.indd 62 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 63

grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;

}
header {

background-color: #6f0;
}
nav {

background-color: #993;
}
article {

background-color: #c93;
}
footer {

background-color: #f90;
}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Cela va automatiquement remettre notre site sur deux colonnes.

Figure 4-13 : Mise en page sur 2 colonnes

9782340-035294_001_224.indd 639782340-035294_001_224.indd 63 19/09/2019 13:3919/09/2019 13:39

64 Chapitre 4

Afin de pouvoir mettre en page notre site web comme on le souhaite, nous allons
définir des zones au niveau CSS. Pour cela nous allons utiliser une propriété qui se
nomme grid-area. Cette propriété va prendre pour valeur un nom, celui que l'on
souhaite. Le but étant de nommer la zone.
Nous avons en tout quatre zones : la zone du header, la zone de la nav, la zone de
l'article et la zone du footer. Dans notre feuille de style, nous allons donc donner
un nom à ces zones. Pour des raisons de simplicité, nous leur donnerons le nom de
leur élément HTML.
body {

margin: 0;
padding:0;

}
#grille {

display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;

}
header {

background-color: #6f0;
grid-area: header;

}
nav {

background-color: #993;
grid-area: nav;

}
article {

background-color: #c93;
grid-area: article;

}
footer {

background-color: #f90;
grid-area: footer;

}
.flexbox {

display: flex;

9782340-035294_001_224.indd 649782340-035294_001_224.indd 64 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 65

justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Maintenant que nous avons défini des zones en niveau CSS, nous allons utiliser la
propriété grid-template-areas dans les propriétés CSS du conteneur. C'est
maintenant que vous allez comprendre la puissance de grid. En effet, la propriété
grid-template-areas va nous permettre de positionner les zones que l'on a définies
exactement comme on le souhaite.
Reprenons les propriétés CSS de notre conteneur.
#grille {

display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;

}

Nous y avons défini deux colonnes. Une première colonne de 1fr de large et une
deuxième colonne de 2fr de large.
Afin de positionner nos quatre zones, nous devons ajouter la propriété grid-
template-areas. Nous lui donnerons pour première valeur la zone header que nous
répéterons deux fois, car cette zone devra occuper les deux colonnes sur la
première ligne. Ce qui nous donne ceci :
grid-template-areas:

"header header"

Nous lui donnerons ensuite pour deuxième valeur, la zone nav suivie de la zone
article qui se retrouveront sur la deuxième ligne. Ce qui donne ceci :
grid-template-areas:

"header header"
"nav article"

9782340-035294_001_224.indd 659782340-035294_001_224.indd 65 19/09/2019 13:3919/09/2019 13:39

66 Chapitre 4

Et enfin nous lui donnerons pour troisième valeur la zone footer que nous
répéterons deux fois, car cette zone devra occuper les deux colonnes sur la
troisième ligne. Ce qui nous donne ceci :
grid-template-areas:

"header header"
"nav article"
"footer footer";

Voici notre code CSS complet :
body {

margin: 0;
padding:0;

}
#grille {

display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;
grid-template-areas:

"header header"
"nav article"
"footer footer";

}
header {

background-color: #6f0;
grid-area: header;

}
nav {

background-color: #993;
grid-area: nav;

}
article {

background-color: #c93;
grid-area: article;

}

9782340-035294_001_224.indd 669782340-035294_001_224.indd 66 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 67

footer {
background-color: #f90;
grid-area: footer;

}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Et voici le résultat de ce code dans un navigateur :

Figure 4-14 : Mise en page souhaitée

Il est très facile de pouvoir modifier la mise en page en cas de besoin. Nous
pouvons très bien demander à inverser l'ordre d'apparition de la nav et de l'article.
Pour cela il nous suffit de donner la valeur de 2 fr à la première colonne, puis
d'inverser les zones nav et article dans les propriétés CSS de grid-template-areas.
#grille {

display: grid;
grid-template-columns: 2fr 1fr;
grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;
grid-template-areas:

"header header"
"article nav"

9782340-035294_001_224.indd 679782340-035294_001_224.indd 67 19/09/2019 13:3919/09/2019 13:39

68 Chapitre 4

"footer footer";
}

Voici le résultat dans un navigateur :

Figure 4-15 : Inversion de l'article et de la navigateur

4.6. La fonction minmax
La fonction CSS minmax permet de pouvoir gérer la hauteur de nos différentes
boîtes.
Nous allons conserver les mêmes codes que précédemment, en modifiant
simplement les valeurs de la propriété grid-template-rows en les passant en pixels.
Nous retirerons la propriété height du conteneur.
#grille {

display: grid;
grid-template-columns: 2fr 1fr;
grid-template-rows: 100px 200px 100px;
width: 600px;
margin: auto;
grid-template-areas:

"header header"
"article nav"
"footer footer";

}

Puis au niveau HTML, nous allons ajouter du texte au sein de l'article.
<div id="grille">

<header class="flexbox">HEADER</header>
 <nav class="flexbox">NAV</nav>
 <article class="flexbox">

9782340-035294_001_224.indd 689782340-035294_001_224.indd 68 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 69

 Tantum autem cuique tribuendum, primum quantum ipse efficere possis,
deinde etiam quantum ille quem diligas atque adiuves, sustinere. Non enim
neque tu possis, quamvis excellas, omnes tuos ad honores amplissimos
perducere, ut Scipio P. Rupilium potuit consulem efficere, fratrem eius L. non
potuit. Quod si etiam possis quidvis deferre ad alterum, videndum est tamen,
quid ille possit sustinere.
 </article>
 <footer class="flexbox">FOOTER</footer>
</div>

Voici le résultat de ce code dans un navigateur :

Figure 4-16 : Mise en place d'un texte dans la paire de balise article

Nous pouvons clairement voir que le texte dépasse de la zone article. Pourquoi
cela ? La réponse vient du fait que la ligne où se trouve la zone article a été définie
comme ayant une hauteur fixe de 200 pixels. Le texte que nous avons inséré dans
cette zone est trop long et il sort donc de la zone. Pour résoudre ce problème, nous
avons à notre disposition la fonction CSS minmax. Elle sera à placer dans les
valeurs de la propriété grid-template-rows. Elle prendra pour arguments deux
valeurs. La première valeur correspondra à la hauteur minimum que l'on souhaitera
donner à la boîte et la seconde valeur correspondra à la valeur maximum que l'on
souhaitera donner à la boîte.
#grille {

display: grid;
grid-template-columns: 2fr 1fr;
grid-template-rows: 100px minmax(200px,auto) 100px;
width: 600px;

9782340-035294_001_224.indd 699782340-035294_001_224.indd 69 19/09/2019 13:3919/09/2019 13:39

70 Chapitre 4

height: 400px;
margin: auto;
grid-template-areas:

"header header"
"article nav"
"footer footer";

}

Voici le résultat de ce code dans un navigateur

Figure 4-17 : Adaptation de l'article à son contenu

Grâce à la fonction minmax, la hauteur de la deuxième ligne sera de 200 pixels
minimum et elle s'adaptera automatiquement à son contenu afin que celui-ci ne se
trouve pas au dehors de l'article.

4.7. La propriété order
Cette propriété va pouvoir nous permettre d'ordonner les différentes boîtes
exactement comme on en a envie et ceci peu importe l'ordre dans lequel ont été
écrites les balises HTML.
Pour commencer, nous allons créer quatre boîtes div que nous allons déclarer dans
un fichier HTML que nous relions à une feuille de style.
<!doctype html>
<html>

9782340-035294_001_224.indd 709782340-035294_001_224.indd 70 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 71

<head>
<meta charset="utf-8">
<title>Mon site</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="grille">

<div class="un flexbox">UN</div>
<div class="deux flexbox">DEUX</div>
<div class="trois flexbox">TROIS</div>
<div class="quatre flexbox">QUATRE</div>

</div>
</body>
</html>

Les quatre boîtes div sont enfermées dans une boîte qui a pour identifiant grille, ce
sera le conteneur. Les quatre boîtes div possèdent une classe commune, la classe
flexbox. Voici le fichier style.css :
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,200px);
width: 400px;
margin: auto;

}
.un {

background-color: #6f0;
}
.deux {

background-color: #993;
}
.trois {

background-color: #c93;
}
.quatre {

background-color: #f90;
}

9782340-035294_001_224.indd 719782340-035294_001_224.indd 71 19/09/2019 13:3919/09/2019 13:39

72 Chapitre 4

.flexbox {
display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Voici le résultat de ce code dans un navigateur :

Figure 4-18 : Mise en place de 4 boîtes sur 2 colonnes

Le positionnement des quatre boîtes est cohérent avec notre code CSS. En effet,
l'affichage se fait bien de gauche à droite et de haut en bas, comme nous l'avons
déjà vu plus haut dans ce chapitre.
La propriété order va nous permettre de modifier ce positionnement. Cette
propriété sera à placer dans les propriétés CSS des contenus. Elle prendra pour
valeur un chiffre. Plus ce chiffre sera important et plus le positionnement de la
boîte qui contient cette propriété sera éloigné. La valeur par défaut de propriété
order est la valeur 0.
Si nous souhaitons positionner la boîte numéro 1 en dernier, nous devons alors lui
donner la propriété order en lui donnant une valeur supérieure à 0.
.un {

background-color: #6f0;
order: 1;

}

Le fait d'avoir donné la valeur 1 à la propriété order de la boîte un placera
automatiquement cette boîte en dernier. Par défaut, les boîtes deux, trois et quatre
ont la valeur 0 pour la propriété order.

9782340-035294_001_224.indd 729782340-035294_001_224.indd 72 19/09/2019 13:3919/09/2019 13:39

Autres propriétés 73

Voici le résultat de ce code dans un navigateur :

Figure 4-19 : La boîte un est à la fin

Si nous souhaitons placer la boîte quatre en premier, nous devons alors lui donner
une propriété order d'une valeur plus petite que les autres. Je rappelle que par
défaut, sa valeur est 0. Il est tout à fait possible de donner des valeurs négatives.
.quatre {

background-color: #f90;
order: -1;

}

Voici le résultat de ce code dans un navigateur :

Figure 4-20 : La boîte quatre est au début

Grâce à la propriété order il est très facile de déplacer des boîtes sans avoir à
toucher au code HTML. Plus le chiffre sera important et plus la boîte sera éloignée.
Réciproquement, plus le chiffre sera petit et plus la boîte sera positionnée en avant.

9782340-035294_001_224.indd 739782340-035294_001_224.indd 73 19/09/2019 13:3919/09/2019 13:39

9782340-035294_001_224.indd 749782340-035294_001_224.indd 74 19/09/2019 13:3919/09/2019 13:39

Chapitre 5
Déplacement des contenus

5.1. Présentation
Il est tout à fait possible de pouvoir déplacer la grille ou bien des contenus suivant
un axe horizontal ou bien un axe vertical. C'est ce que nous allons voir ensemble
dans ce nouveau chapitre.
Tout d'abord, nous allons mettre en place un document HTML qui possédera un
conteneur et quatre contenus. Nous donnerons une classe commune à nos contenus,
la classe flexbox, comme nous l'avions fait précédemment. Quant au conteneur,
nous lui donnerons l'identifiant grille.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="grille">

<div class="un flexbox">UN</div>
<div class="deux flexbox">DEUX</div>
<div class="trois flexbox">TROIS</div>
<div class="quatre flexbox">QUATRE</div>

</div>
</body>
</html>

Au niveau CSS, nous allons demander que le conteneur fasse 75% de large sur 400
pixels de haut avec un fond blanc, qu'il soit centré sur l'écran et qu'il contienne une
grille de deux colonnes. Nous donnerons également une hauteur de 100 pixels à ces
lignes. Pour les contenus, nous leur donnerons une couleur afin de les distinguer et
nous donnerons à la classe flexbox les mêmes propriétés que nous lui avons
données précédemment. Enfin, nous demanderons à avoir une couleur de fond
d'écran noire.
body {

background-color: #000;

9782340-035294_001_224.indd 759782340-035294_001_224.indd 75 19/09/2019 13:3919/09/2019 13:39

76 Chapitre 5

}
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}
.un {

background-color: #6f0;
}
.deux {

background-color: #993;
}
.trois {

background-color: #c93;
}
.quatre {

background-color: #f90;
}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

9782340-035294_001_224.indd 769782340-035294_001_224.indd 76 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 77

Voici le résultat de ce code dans un navigateur :

Figure 5-1 : Résultat de notre code

Maintenant que nous avons mis en place les bases de notre code CSS, nous allons
voir comment il est possible de déplacer la grille ainsi que les différents contenus
suivant un axe horizontal et suivant un axe vertical.

5.2. Alignement de la grille sur l'axe horizontal
Sur la figure 5-1, nous voyons que la grille débute sur le bord gauche du conteneur.
Il s'agit d'un comportement par défaut. Cet alignement est accessible via la
propriété CSS justify-content. Cette propriété est à placer au sein des propriétés du
conteneur. De ce fait, nous pouvons très facilement déplacer la grille le long de
l'axe horizontal. La propriété justify-content prend différentes valeurs. Par défaut,
elle prendra la valeur start. Et si nous souhaitons positionner la grille le long du
bord droit du conteneur, alors la propriété justify-content prendra la valeur end.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: end;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

9782340-035294_001_224.indd 779782340-035294_001_224.indd 77 19/09/2019 13:3919/09/2019 13:39

78 Chapitre 5

Voici le résultat dans un navigateur :

Figure 5-2 : Alignement de la grille le long du bord droit du conteneur

Pour centrer la grille suivant l'axe horizontal, la propriété justify-content prendra
alors la valeur center.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-3 : Centrage de la grille selon l'axe horizontal

9782340-035294_001_224.indd 789782340-035294_001_224.indd 78 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 79

Toujours grâce à la propriété justify-content nous pouvons séparer les colonnes. En
utilisant la valeur space-between, nous faisons débuter la grille suivant le bord
gauche du conteneur et nous la faisons se terminer le long de son bord droit.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: space-between;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-4 : Espacement en space-between

Et s'il devait y avoir d'autres colonnes alors elles seraient espacées de façon
proportionnelle les unes des autres entre la première colonne et la dernière colonne.
#grille {

display: grid;
grid-template-columns: repeat(3,200px);
grid-template-rows: repeat(2,100px);
justify-content: space-between;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

9782340-035294_001_224.indd 799782340-035294_001_224.indd 79 19/09/2019 13:3919/09/2019 13:39

80 Chapitre 5

Voici le résultat dans un navigateur :

Figure 5-5 : Espacement en space-between avec 3 colonnes

Nous pouvons également aligner nos colonnes le long de l'axe horizontal en space-
around. Cela aura pour incidence d'éloigner les colonnes de chaque extrêmité de la
moitié de la distance qu'il existe entre chaque colonne.
#grille {

display: grid;
grid-template-columns: repeat(3,200px);
grid-template-rows: repeat(2,100px);
justify-content: space-around;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-6 : Espacement en space-around
Et pour être tout à fait complet avec les espacements des contenus le long de l'axe
horizontal, nous avons la valeur space-evenly qui donnera la même distance entre

9782340-035294_001_224.indd 809782340-035294_001_224.indd 80 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 81

les bords et les contenus et entre les contenus eux-mêmes.
#grille {

display: grid;
grid-template-columns: repeat(3,200px);
grid-template-rows: repeat(2,100px);
justify-content: space-evenly;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-7 : Espacement en space-evenly

5.3. Alignement de la grille sur l'axe vertical
Nous venons de voir comment il est possible d'aligner la grille suivant l'axe
horizontal, maintenant nous allons voir comment il est possible de l'aligner suivant
l'axe vertical. Pour cela nous avons à notre disposition la propriété CSS align-
content. Cette propriété sera également à placer dans les propriétés CSS du
conteneur. Par défaut elle a la valeur start, c'est-à-dire qu'elle débute le long du
bord haut du conteneur. Si nous voulons que la grille débute le long du bord bas du
conteneur, alors nous devons donner la valeur end à la propriété align-content.
Nous gardons le même code HTML que précédemment, à savoir
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>

9782340-035294_001_224.indd 819782340-035294_001_224.indd 81 19/09/2019 13:3919/09/2019 13:39

82 Chapitre 5

<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="grille">

<div class="un flexbox">UN</div>
<div class="deux flexbox">DEUX</div>
<div class="trois flexbox">TROIS</div>
<div class="quatre flexbox">QUATRE</div>

</div>
</body>
</html>

Concernant le code CSS, nous reprenons le même code qu'au tout début de ce
chapitre et nous plaçons la propriété align-content dans le conteneur en lui donnant
pour valeur end.
body {

background-color: #000;
}
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
align-content: end;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}
.un {

background-color: #6f0;
}
.deux {

background-color: #993;
}
.trois {

background-color: #c93;
}

9782340-035294_001_224.indd 829782340-035294_001_224.indd 82 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 83

.quatre {
background-color: #f90;

}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Voici le résultat dans un navigateur :

Figure 5-8 : Alignement vertical au bord bas du conteneur

Si nous voulons centrer la grille le long de l'axe vertical, nous allons alors donner
la valeur center à la propriété align-content.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
align-content: center;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

9782340-035294_001_224.indd 839782340-035294_001_224.indd 83 19/09/2019 13:3919/09/2019 13:39

84 Chapitre 5

Voici le résultat dans un navigateur :

Figure 5-9 : Alignement vertical centré

Si nous souhaitons que les contenus occupent toute la hauteur qui leur est allouée,
nous devons alors donner la valeur stretch à la propriété align-content. Attention
cependant à ne pas conserver la propriété grid-template-rows qui définit les
hauteurs de lignes.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
/*grid-template-rows: repeat(2,100px);*/
align-content: stretch;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-10 : Les contenus occupent toute la hauteur qui leur est allouée

9782340-035294_001_224.indd 849782340-035294_001_224.indd 84 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 85

Il est à préciser que la valeur stretch est la valeur par défaut de la propriété align-
content. Bien-sûr pour qu'elle fonctionne, le conteneur ne doit pas avoir de
propriété grid-template-rows.
Toujours grâce à la propriété align-content nous avons la possibilité de pouvoir
séparer les lignes. En utilisant la valeur space-between, nous faisons alors débuter
la grille suivant le bord haut du conteneur et nous la faisons se terminer le long du
bord bas du conteneur.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
align-content: space-between;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-11 : Espacement vertical en space-between

Nous pouvons également aligner nos lignes le long de l'axe vertical en space-
around. Cela aura pour incidence d'éloigner les lignes de chaque extrêmité de la
moitié de la distance qu'il existe entre chaque ligne.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
align-content: space-around;
background-color: #fff;

9782340-035294_001_224.indd 859782340-035294_001_224.indd 85 19/09/2019 13:3919/09/2019 13:39

86 Chapitre 5

width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-12 : Espacement vertical en space-around

Et enfin, nous avons la valeur space-evenly qui donnera la même distance entre les
bords et les contenus et entre les contenus eux-mêmes.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
align-content: space-evenly;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

9782340-035294_001_224.indd 869782340-035294_001_224.indd 86 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 87

Voici le résultat dans un navigateur :

Figure 5-13 : Espacement vertical en space-evenly

5.4. Alignement de tous les contenus
Nous avons vu que nous pouvons très facilement manipuler la grille en elle-même,
ici nous allons voir qu'il est également tout à fait possible de manipuler les
contenus.
Reprenons notre code HTML sans apporter de modification.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="grille">

<div class="un flexbox">UN</div>
<div class="deux flexbox">DEUX</div>
<div class="trois flexbox">TROIS</div>
<div class="quatre flexbox">QUATRE</div>

</div>
</body>
</html>

Au niveau du code CSS, nous allons reprendre le code précédent mais en
demandant à aligner la grille verticalement et horizontalement au sein du
conteneur.

9782340-035294_001_224.indd 879782340-035294_001_224.indd 87 19/09/2019 13:3919/09/2019 13:39

88 Chapitre 5

body {
background-color: #000;

}
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}
.un {

background-color: #6f0;
}
.deux {

background-color: #993;
}
.trois {

background-color: #c93;
}
.quatre {

background-color: #f90;
}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

9782340-035294_001_224.indd 889782340-035294_001_224.indd 88 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 89

Voici le résultat de ce code dans un navigateur :

Figure 5-14 : La grille est centrée verticalement et horizontalement

Afin de manipuler la grille, nous avons utilisé les propriétés justify-content et
align-content. Pour manipuler les contenus, nous allons utiliser les propriétés CSS
justify-items et align-items.
Si nous voulons que les contenus débutent en haut de leur ligne de grille
horizontale, nous donnons à la propriété align-items la valeur start. Le fait
d'utiliser la propriété align-items fera que la hauteur des contenus sera égale à la
hauteur de ce qu'ils contiennent. Concernant la hauteur entre les lignes de grille
horizontale, elles resteront à 100 pixels comme défini par la propriété grid-
template-rows. La propriété align-items est à placer au sein des propriétés du
conteneur.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: start;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

9782340-035294_001_224.indd 899782340-035294_001_224.indd 89 19/09/2019 13:3919/09/2019 13:39

90 Chapitre 5

Voici le résultat dans un navigateur :

Figure 5-15 : Align-items: start; sur les contenus

Si nous voulons que les contenus débutent en bas de leur ligne de grille
horizontale, nous donnons à la propriété align-items la valeur end. Le fait d'utiliser
la propriété align-items fera que la hauteur des contenus sera égale à la hauteur de
ce qu'ils contiennent. Concernant la hauteur entre les lignes de grille horizontale,
elles resteront à 100 pixels comme défini par la propriété grid-template-rows. La
propriété align-items est à placer au sein des propriétés du conteneur.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: end;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

9782340-035294_001_224.indd 909782340-035294_001_224.indd 90 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 91

Voici le résultat dans un navigateur :

Figure 5-16 : Align-items: end; sur les contenus

Si nous voulons que les contenus soient centrés à l'intérieur des lignes de grille
horizontale, nous donnons à la propriété align-items la valeur center.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: center;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-17 : Align-items: center; sur les contenus

9782340-035294_001_224.indd 919782340-035294_001_224.indd 91 19/09/2019 13:3919/09/2019 13:39

92 Chapitre 5

Et si nous voulons que les contenus occupent toute la hauteur qui leur est allouée
entre les lignes de grille horizontale, il suffit alors de donner la valeur stretch à la
propriété align-items. Il est à préciser que cette valeur est la valeur par défaut.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: stretch;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-18 : Align-items: stretch; sur les contenus

Maintenant si nous voulons aligner les contenus le long des lignes de grille
verticale, nous devons alors utiliser la propriété justify-items. Elle prendra les
mêmes valeurs que la propriété align-items.
Si nous voulons que les contenus débutent à gauche de leur ligne de grille verticale,
nous donnons à la propriété justify-items la valeur start. Le fait d'utiliser la
propriété justify-items fera que la largeur des contenus sera égale à la largeur de ce
qu'ils contiennent. Concernant la largeur entre les lignes de grille verticale, elle
restera à 200 pixels comme défini par la propriété grid-template-columns. La
propriété justify-items est à placer au sein des propriétés du conteneur.
#grille {

display: grid;

9782340-035294_001_224.indd 929782340-035294_001_224.indd 92 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 93

grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: stretch;
justify-items: start;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-19 : Justify-items: start; sur les contenus

Si nous voulons que les contenus débutent à droite de leur ligne de grille verticale,
nous donnons à la propriété justify-items la valeur end. Le fait d'utiliser la
propriété justify-items fera que la largeur des contenus sera égale à la largeur de ce
qu'ils contiennent. Concernant la largeur entre les lignes de grille verticale, elle
restera à 200 pixels comme défini par la propriété grid-template-columns. La
propriété justify-items est à placer au sein des propriétés du conteneur.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: stretch;
justify-items: end;
background-color: #fff;

9782340-035294_001_224.indd 939782340-035294_001_224.indd 93 19/09/2019 13:3919/09/2019 13:39

94 Chapitre 5

width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

Figure 5-20 : Justify-items: end; sur les contenus

Si nous voulons que les contenus soient centrés à l'intérieur des lignes de grille
verticale, nous donnons à la propriété justify-items la valeur center.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: stretch;
justify-items: center;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

9782340-035294_001_224.indd 949782340-035294_001_224.indd 94 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 95

Voici le résultat dans un navigateur :

Figure 5-21 : Justify-items: center; sur les contenus

Et si nous voulons que les contenus occupent toute la largeur qui leur est allouée
entre les lignes de grille verticale, il suffit alors de donner la valeur stretch à la
propriété justify-items. Il est à préciser que cette valeur est la valeur par défaut.
#grille {

display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: stretch;
justify-items: stretch;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

9782340-035294_001_224.indd 959782340-035294_001_224.indd 95 19/09/2019 13:3919/09/2019 13:39

96 Chapitre 5

Voici le résultat dans un navigateur :

Figure 5-22 : Justify-items: strecth; sur les contenus

5.5. Alignement d'un contenu
Nous allons maintenant voir comment aligner un contenu de manière individuelle.
Pour cela nous allons utiliser des propriétés CSS qui seront cette fois à placer dans
les propriétés CSS de chaque contenu que nous voudrons manipuler.
En conservant exactement le même code que précédemment, si nous voulons
centrer la boîte numéro un entre ses lignes de grille verticales, nous allons alors
utiliser la propriété justify-self au sein des propriétés CSS de la boîte numéro un.
Nous lui donnerons alors pour valeur center.
.un {

background-color: #6f0;
justify-self: center;

}

Voici le résultat dans un navigateur :

Figure 5-23 : justify-self: center; pour la boîte numéro 1

9782340-035294_001_224.indd 969782340-035294_001_224.indd 96 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 97

Si nous voulons que la boîte numéro un débute sur sa ligne de grille verticale
gauche alors nous donnerons la valeur start à la propriété justify-self.
.un {

background-color: #6f0;
justify-self: start;

}

Voici le résultat dans un navigateur :

Figure 5-24 : Justify-self: start; pour la boîte numéro 1

Si nous voulons aligner la boîte numéro un à droite, nous utiliserons alors la valeur
end que nous donnons à la propriété justify-self.
.un {

background-color: #6f0;
justify-self: end;

}

Voici le résultat dans un navigateur :

Figure 5-25 : Justify-self: end; pour la boîte numéro 1

9782340-035294_001_224.indd 979782340-035294_001_224.indd 97 19/09/2019 13:3919/09/2019 13:39

98 Chapitre 5

Et enfin, la valeur par défaut pour la propriété justify-self est la valeur stretch. Elle
permet à la boîte numéro un d'occuper toute la largeur qui lui est allouée.
.un {

background-color: #6f0;
justify-self: stretch;

}

Voici le résultat dans un navigateur :

Figure 5-26 : Justify-self: stretch; pour la boîte numéro 1

De la même façon, nous pouvons aligner la boîte numéro un selon l'axe vertical.
Pour cela, nous avons à notre disposition la propriété align-self. Cette propriété
sera à placer dans les propriétés CSS du contenu que nous souhaiterons aligner.
En conservant exactement le même code que précédemment, si nous voulons
centrer la boîte numéro un entre ses lignes de grille horizontale, nous allons alors
utiliser la propriété align-self au sein des propriétés CSS de la boîte numéro un.
Nous lui donnerons alors pour valeur center.
.un {

background-color: #6f0;
align-self: center;

}

9782340-035294_001_224.indd 989782340-035294_001_224.indd 98 19/09/2019 13:3919/09/2019 13:39

Déplacement des contenus 99

Voici le résultat dans un navigateur :

Figure 5-27 : Align-self: center; pour la boîte numéro 1

Si nous voulons que la boîte numéro un débute sur sa ligne de grille horizontale
haute alors nous donnerons la valeur start à la propriété align-self.
.un {

background-color: #6f0;
align-self: start;

}

Voici le résultat dans un navigateur :

Figure 5-28 : Align-self: start; pour la boîte numéro 1

Si nous voulons aligner la boîte numéro un en bas, nous utiliserons alors la valeur
end que nous donnons à la propriété align-self.
.un {

background-color: #6f0;
align-self: end;

}

9782340-035294_001_224.indd 999782340-035294_001_224.indd 99 19/09/2019 13:3919/09/2019 13:39

100 Chapitre 5

Voici le résultat dans un navigateur :

Figure 5-29 : Align-self: end; pour la boîte numéro 1

Et enfin, la valeur par défaut pour la propriété align-self est la valeur stretch. Elle
permet à la boîte numéro un d'occuper toute la hauteur qui lui est allouée.
.un {

background-color: #6f0;
align-self: stretch;

}

Voici le résultat dans un navigateur :

Figure 5-30 : Align-self: stretch; pour la boîte numéro 1

9782340-035294_001_224.indd 1009782340-035294_001_224.indd 100 19/09/2019 13:3919/09/2019 13:39

Chapitre 6
Création d'une maquette d'un site responsive

6.1. Présentation du travail
Pour terminer cette première partie du livre, nous allons réaliser une maquette de
site internet responsive en utilisant la technologie grid. Nous allons travailler en
mobile first, c'est-à-dire pour les smartphones en priorité. Nous ne ferons que deux
types d'écran, un petit et un grand. Nous mettrons en place un point de rupture sur
les 900 pixels. Voici ci-dessous la maquette que nous allons réaliser ensemble.

Figure 6-1 : Présentation de la maquette que nous allons réaliser

Nous allons mettre en place différents contenus. Chaque contenu sera numéroté,
ainsi nous pourrons les retrouver sur les petits écrans et sur les grands écrans. En
sachant que la boîte numéro 5 ne sera pas présente sur les petits écrans.

6.2. Mise en place des bases du travail
Nous allons déjà commencer par mettre en place notre code HTML. Nous allons
déclarer une boîte conteneur qui contiendra neuf boîtes.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<link rel="stylesheet" href="style.css" />

9782340-035294_001_224.indd 1019782340-035294_001_224.indd 101 19/09/2019 13:3919/09/2019 13:39

102 Chapitre 6

</head>
<body>
<div id="grille">

<div class="un">1</div>
<div class="deux">2</div>
<div class="trois">3</div>
<div class="quatre">4</div>
<div class="cinq">5</div>
<div class="six">6</div>
<div class="sept">7</div>
<div class="huit">8</div>
<div class="neuf">9</div>

</div>
</body>
</html>

Le fait d'avoir définie une classe différente pour chacune de nos neuf boîtes va
nous permettre de leur donner une couleur de fond différente afin de mieux les
distinguer. Voici le code que nous allons écrire dans le fichier style.css
.un {

background-color: #d44bcd;
}
.deux {

background-color: #f16b08;
}
.trois {

background-color: #b2f109;
}
.quatre {

background-color: #23f109;
}
.cinq {

background-color: #3050f0;
}
.six {

background-color: #fbb5e9;
}

9782340-035294_001_224.indd 1029782340-035294_001_224.indd 102 19/09/2019 13:3919/09/2019 13:39

Création d'une maquette d'un site responsive 103

.sept {
background-color: #0af1ad;

}
.huit {

background-color: #e8f571;
}
.neuf {

background-color: #31838f;
}

Voici le résultat obtenu dans un navigateur :

Figure 6-2 : Mise en place d'une couleur de fond pour les contenus

Afin de rendre nos boîtes un peu plus jolies et un peu plus visible, nous allons leur
définir une classe commune que nous appellerons flexbox et qui contiendra les
mêmes propriétés CSS que nous avons déjà utilisées dans ce chapitre.
Ajout de la classe flexbox à nos neuf boîtes de contenus.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="grille">

<div class="un flexbox">1</div>
<div class="deux flexbox">2</div>
<div class="trois flexbox">3</div>
<div class="quatre flexbox">4</div>
<div class="cinq flexbox">5</div>
<div class="six flexbox">6</div>
<div class="sept flexbox">7</div>
<div class="huit flexbox">8</div>

9782340-035294_001_224.indd 1039782340-035294_001_224.indd 103 19/09/2019 13:3919/09/2019 13:39

104 Chapitre 6

<div class="neuf flexbox">9</div>
</div>
</body>
</html>

Voici le code CSS de la classe flexbox :
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Voici le résultat obtenu dans un navigateur :

Figure 6-3 : Ajout de la classe flexbox

Et pour terminer la première partie de notre exercice, nous allons simplement
définir la propriété display que nous placerons à grid pour le conteneur à qui nous
avons donné l'identifiant grille.
#grille {

display: grid;
}

9782340-035294_001_224.indd 1049782340-035294_001_224.indd 104 19/09/2019 13:3919/09/2019 13:39

Création d'une maquette d'un site responsive 105

6.3. CSS côté smartphone
Nous avons dit que le site serait mobile first. Nous allons donc configurer notre
CSS par rapport aux écrans de téléphone portable. Voici ci-dessous le rappel de ce
que nous souhaitons mettre en place.

Figure 6-4 : Rappel du travail à mettre en place

Ce qui nous intéresse pour le moment est l'écran de gauche. On constate qu'il devra
être divisé en deux colonnes. Pour être plus précis, nous dirons que la première
ligne contiendra une boîte qui va occuper les deux colonnes, la deuxième et la
troisième ligne également. Concernant la quatrième ligne, elle contiendra deux
boîtes qui occuperont chacune deux colonnes. Il en va de même pour la cinquième
ligne. Et enfin la sixième et dernière ligne contiendra une boîte qui va occuper les
deux colonnes. Nous pouvons également constater que la boîte numéro 5 ne sera
pas présente sur les écrans de téléphone portable.

Nous allons maintenant traduire tout cela en CSS. Afin de mettre en place des
colonnes, nous allons utiliser la propriété grid-template-columns au sein des
propriétés CSS du conteneur.
#grille {

display: grid;
grid-template-columns: repeat(2, 50%);

}

9782340-035294_001_224.indd 1059782340-035294_001_224.indd 105 19/09/2019 13:3919/09/2019 13:39

106 Chapitre 6

Voici le résultat dans un navigateur :

Figure 6-5 : Mise en place de 2 colonnes

Nous allons maintenant nommer toutes les zones à l'intérieur de notre feuille de
style en utilisant la propriété grid-area qui doit être appliquée à chaque contenu.
.un {

background-color: #d44bcd;
grid-area: un;

}
.deux {

background-color: #f16b08;
grid-area: deux;

}
.trois {

background-color: #b2f109;
grid-area: trois;

}
.quatre {

background-color: #23f109;
grid-area: quatre;

}
.cinq {

background-color: #3050f0;
grid-area: cinq;

}
.six {

background-color: #fbb5e9;
grid-area: six;

}

9782340-035294_001_224.indd 1069782340-035294_001_224.indd 106 19/09/2019 13:3919/09/2019 13:39

Création d'une maquette d'un site responsive 107

.sept {
background-color: #0af1ad;
grid-area: sept;

}
.huit {

background-color: #e8f571;
grid-area: huit;

}
.neuf {

background-color: #31838f;
grid-area: neuf;

}

Maintenant que nous avons donné un nom à l'ensemble de nos contenus, nous
allons pouvoir mettre en place la propriété grid-template-areas afin de les
positionner comme convenu sur nos deux colonnes.
Avant de faire cela, nous allons tout de suite cacher la boîte numéro 5 car elle ne
doit pas apparaître sur les écrans de smartphone. Nous effacerons la propriété grid-
area qui n'a pas lieu d'être puisque cette boîte ne sera pas à positionner.
.cinq {

background-color: #3050f0;
visibility: hidden;

}

Nous pouvons à présent mettre en place la propriété grid-template-areas au sein de
notre conteneur.
#grille {

display: grid;
grid-template-columns: repeat(2, 50%);
grid-template-areas:

"un un"
"deux deux"
"trois trois"
"quatre six"
"sept huit"
"neuf neuf";

}

9782340-035294_001_224.indd 1079782340-035294_001_224.indd 107 19/09/2019 13:3919/09/2019 13:39

108 Chapitre 6

Voici le résultat obtenu dans un navigateur :

Figure 6-6 : Mise en place du site côté mobile first

6.4. CSS côté ordinateur
Maintenant que la mise en page côté écran de téléphone portable est faite, nous
allons mettre en place la mise en page côté écran d'ordinateur. La première chose à
faire est de définir le point de rupture qui déterminera la nouvelle mise en page.
Nous avions fixé ce point de rupture à 900 pixels.
@media screen and (min-width: 901px) {
}

Cela signifie que dès que l'écran qui viendra visionner notre page web sera
strictement supérieur à 900 pixels alors la mise en page du site sera modifiée. Nous
allons à présent mettre en place cette modification.
La première chose à faire est de rendre visible la boîte numéro 5 pour ce type
d'écran et de lui donner un nom en utilisant la propriété grid-area.
@media screen and (min-width: 901px) {

.cinq {
grid-area: cinq;
visibility: visible;
}

}

Et ensuite, pour réaliser la mise en page, nous allons juste avoir besoin de récupérer
le conteneur et de lui appliquer une nouvelle mise en page au travers de ses
propriétés CSS. Nous modifierons alors le nombre de colonnes, le faisant passer de
2 à 5 colonnes. Nous leur donnerons une largeur de 20% chacune. Il ne nous
restera alors plus qu'à positionner nos différentes lignes et colonnes en utilisant la
propriété grid-template-areas.

9782340-035294_001_224.indd 1089782340-035294_001_224.indd 108 19/09/2019 13:3919/09/2019 13:39

Création d'une maquette d'un site responsive 109

@media screen and (min-width: 901px) {
#grille {
grid-template-columns: repeat(5, 20%);
grid-template-areas:

"un un un un un"
"deux trois trois trois trois"
"deux quatre quatre quatre cinq"
"deux six six six cinq"
"sept sept sept huit huit"
"neuf neuf neuf neuf neuf";

}
.cinq {
visibility: visible;
}

}

Voici le résultat obtenu pour les écrans supérieurs à 900 pixels :

Figure 6-7 : Mise en page pour les écrans d'ordinateur

9782340-035294_001_224.indd 1099782340-035294_001_224.indd 109 19/09/2019 13:3919/09/2019 13:39

110 Chapitre 6

6.5. Conclusion
Il nous reste encore une dernière chose à faire si nous voulons que notre site
s'affiche correctement sur un smartphone, c'est de mettre en place un meta
viewport. Cela va nous permettre de pouvoir rectifier les informations fournies par
le constructeur. Par exemple, pour un certain smartphone, le constructeur va nous
annoncer une taille de 1280 pixels. Cependant les pixels annoncés par le
constructeur ne sont pas les pixels que nous utilisons en qualité de concepteur de
site internet. Il nous annonce 1280 pixels, mais en réalité la taille serait pour nous
de 480 pixels. Donc le meta viewport va nous permettre de pouvoir rectifier cette
différence. Voici le code HTML complet de l'exercice que nous venons de réaliser
ensemble.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="grille">

<div class="un flexbox">1</div>
<div class="deux flexbox">2</div>
<div class="trois flexbox">3</div>
<div class="quatre flexbox">4</div>
<div class="cinq flexbox">5</div>
<div class="six flexbox">6</div>
<div class="sept flexbox">7</div>
<div class="huit flexbox">8</div>
<div class="neuf flexbox">9</div>

</div>
</body>
</html>

Et voici également le code CSS complet
#grille {

display: grid;
grid-template-columns: repeat(2, 50%);

9782340-035294_001_224.indd 1109782340-035294_001_224.indd 110 19/09/2019 13:3919/09/2019 13:39

Création d'une maquette d'un site responsive 111

grid-template-areas:
"un un"
"deux deux"
"trois trois"
"quatre six"
"sept huit"
"neuf neuf";

}
.un {

background-color: #d44bcd;
grid-area: un;

}
.deux {

background-color: #f16b08;
grid-area: deux;

}
.trois {

background-color: #b2f109;
grid-area: trois;

}
.quatre {

background-color: #23f109;
grid-area: quatre;

}
.cinq {

background-color: #3050f0;
visibility: hidden;

}
.six {

background-color: #fbb5e9;
grid-area: six;

}
.sept {

background-color: #0af1ad;
grid-area: sept;

}
.huit {

9782340-035294_001_224.indd 1119782340-035294_001_224.indd 111 19/09/2019 13:3919/09/2019 13:39

112 Chapitre 6

background-color: #e8f571;
grid-area: huit;

}
.neuf {

background-color: #31838f;
grid-area: neuf;

}
.flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}
@media screen and (min-width: 901px) {

#grille {
grid-template-columns: repeat(5, 20%);
grid-template-areas:

"un un un un un"
"deux trois trois trois trois"
"deux quatre quatre quatre cinq"
"deux six six six cinq"
"sept sept sept huit huit"
"neuf neuf neuf neuf neuf";

}
.cinq {
grid-area: cinq;
visibility: visible;
}

}

9782340-035294_001_224.indd 1129782340-035294_001_224.indd 112 19/09/2019 13:3919/09/2019 13:39

Partie 2

FLEXBOX

9782340-035294_001_224.indd 1139782340-035294_001_224.indd 113 19/09/2019 13:3919/09/2019 13:39

9782340-035294_001_224.indd 1149782340-035294_001_224.indd 114 19/09/2019 13:3919/09/2019 13:39

Chapitre 7
Le display flex

7.1. Mise en place de nos documents de base
Nous allons créer en HTML, une boîte div à qui nous allons donner pour identifiant
conteneur. Cette boîte va contenir différentes autres boîtes div. Nous allons en
créer trois. Voici ce que cela va nous donner.
<div id="conteneur">

<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>

Jusqu'ici rien de bien extraordinaire, nous venons simplement de déclarer des
balises génériques du HTML. Notre fichier HTML de base que nous pouvons
appeler index.html ressemble donc à ceci.
<!doctype html>
<html>
<head>

<meta charset="utf-8" />
<title>Flexbox</title>

</head>
<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

9782340-035294_001_224.indd 1159782340-035294_001_224.indd 115 19/09/2019 13:3919/09/2019 13:39

116 Chapitre 7

En appelant notre fichier index.html dans un navigateur, nous obtenons le résultat
suivant.

Figure 7-1 : Résultat de l'appel du fichier index.html

Pourquoi un tel résultat ? Tout simplement parce que les balises div sont de type
bloc et font donc apparaître les éléments les uns en dessous des autres. Il s'agit là
du comportement normal du CSS.
Afin de rendre tout cela un peu plus visuel, nous allons créer une feuille de style
externe que nous nommerons style.css. Nous allons relier cette feuille de style à
notre fichier HTML à l'aide du code suivant.
<link rel="stylesheet" href="style.css" />

Notre fichier HTML devient donc
<!doctype html>
<html>
<head>

<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />

</head>
<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Passons à présent à l'édition de notre feuille de style. Nous allons donner un style à
nos différents contenus, en leur donnant une couleur de fond. Voici ce que cela va
donner.
.contenu1 {

background-color:#f9f;
}

9782340-035294_001_224.indd 1169782340-035294_001_224.indd 116 19/09/2019 13:3919/09/2019 13:39

Le display flex 117

.contenu2 {
background-color:#ff3;

}
.contenu3 {

background-color:#C9F;
}

En relançant notre fichier index.html dans notre navigateur, nous allons obtenir
ceci

Figure 7-2 : Résultat de l'index.html avec sa feuille de style

Le fait d'avoir appliqué un style pour afficher une couleur de fond à nos différents
contenus, montre bien visuellement le type bloc des balises div, puisque les
couleurs de fond s'étalent sur toute la largeur de l'écran.

7.2. Déclarer du flex dans notre code CSS
Jusque là nous venons de voir que le comportement naturel d'une balise div est le
type bloc, et donc par conséquent à chaque fois que l'on crée une balise div, les
infos qui se trouvent à l'intérieur de cette balise commencent à la ligne. Flexbox va
venir totalement anéantir ce comportement pour imposer le sien. C'est ce que nous
allons voir maintenant. Lorsque l'on souhaite donner un comportement flex à un ou
plusieurs contenus, nous le mentionnons alors dans le conteneur. Le conteneur
étant celui qui va contenir les différentes boîtes qui vont devenir flexibles. Pour
effectuer cela, il suffit de déclarer le style suivant à l'identifiant conteneur, dans
notre fichier style.css
#conteneur {

display: flex;
}

La conséquence est immédiate : le comportement naturel de type bloc des balises
div est remplacé par celui de flexbox.

9782340-035294_001_224.indd 1179782340-035294_001_224.indd 117 19/09/2019 13:3919/09/2019 13:39

118 Chapitre 7

Regardez la figure ci-dessous, elle montre le résultat de ce nouveau comportement.

Figure 7-3 : Notre premier flexbox

Le fait d'avoir passé le conteneur en display:flex a rendu toutes les boîtes
contenues à l'intérieur du conteneur, flexibles. Et donc elles se sont positionnées les
unes à côté des autres. Leur type bloc a totalement disparu. Nous ne sommes donc
plus sur une notion de bloc ou de inline mais de flex.

7.3. Deux possibilités flex ou inline-flex
Précédemment nous avons défini la valeur flex à la propriété display. Si nous
avions défini la valeur inline-flex au lieu de la valeur flex, ceci n'aurait rien changé
pour les contenus. Ils se seraient positionnés les uns à côté des autres, exactement
comme précédemment.
#conteneur {

display: inline-flex;
}

Voici le résultat dans un navigateur :

Figure 7-4 : Résultat d'une valeur inline-flex

Comme vous pouvez le constater, cela ne change strictement rien aux contenus. Ils
ont adopté un comportement flex. Alors pourquoi deux valeurs possibles pour la
propriété display ? Cela va permettre à un conteneur vis-à-vis d'autres conteneurs,
d'être flex (c'est-à-dire de type bloc) ou inline-flex (c'est-à-dire de type inline).
Cela signifie que nous pouvons définir autant de conteneurs qu'on le souhaite dans
une page. Ils se positionneront entre eux de manière bloc ou inline, respectivement
flex ou inline-flex. Si par exemple, vous souhaitez placer deux conteneurs l'un à
côté de l'autre, alors vous leur donnerez la valeur inline-flex à leur propriété
display.

7.4. La largeur des contenus
Comme vous l'avez sans doûte remarqué, la largeur des contenus a été modifiée.
En fait la largeur des boîtes est liée à leur contenu. Ici, la première boîte a pour
contenu contenu 1, la seconde boîte a pour contenu contenu 2 et la troisième boîte
a pour contenu contenu 3. Si nous modifions le contenu d'une boîte alors sa largeur

9782340-035294_001_224.indd 1189782340-035294_001_224.indd 118 19/09/2019 13:3919/09/2019 13:39

Le display flex 119

s'en retrouvera modifiée. Prenons tout de suite un exemple pour bien comprendre
ce principe. Nous allons modifier le contenu de la première boîte en le remplaçant
par le chiffre 1.
<!doctype html>
<html>
<head>

<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />

</head>
<body>

<div id="conteneur">
<div class="contenu1">1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Voici donc le résultat que nous obtenons :

Figure 7-5 : La largeur d'une boîte est liée à son contenu.

Comme vous pouvez le constater, la première boîte est beaucoup moins large que
les deux boîtes suivantes puisque son contenu est uniquement le chiffre 1. Donc la
largeur de la boîte est bien liée à son contenu.

7.5. Modifions le style par défaut
Afin de rendre visuellement plus jolies nos boîtes de contenu, nous allons modifier
leur style CSS en leur apportant la propriété padding. Voila à quoi va ressembler
notre fichier style.css
#conteneur {

display: flex;
}
.contenu1 {

background-color:#FFC;
padding: 20px;

9782340-035294_001_224.indd 1199782340-035294_001_224.indd 119 19/09/2019 13:3919/09/2019 13:39

120 Chapitre 7

}
.contenu2 {

background-color:#ff3;
padding: 20px;

}
.contenu3 {

background-color:#FCF;
padding: 20px;

}

Nous en profitons pour remettre le fichier index.html comme initialement.
<!doctype html>
<html>
<head>

<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />

</head>
<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Voici le résultat que nous obtenons dans notre navigateur :

Figure 7-6 : Les boîtes sont enrichies d'un padding

Comme nous l'avons constaté précédemment, nous voyons bien ici que la largeur
des boîtes est bien liée à leur contenu, mais aussi aux styles qu'on leur applique. Ici
le padding qui permet de créer un espace entre le bord et son contenu, a permis
d'augmenter la largeur des boîtes.

9782340-035294_001_224.indd 1209782340-035294_001_224.indd 120 19/09/2019 13:3919/09/2019 13:39

Chapitre 8
La différence entre flex et inline-flex

8.1. La propriété display
Comme nous l'avons vu dans le chapitre précédent, les valeurs flex et inline-flex
données à la propriété display, sont liées uniquement au conteneur. Lorsque l'on
donne la valeur flex à la propriété display d'un conteneur, ce conteneur sera de type
bloc vis-à-vis d'un autre conteneur. Lorsque l'on donne la valeur inline-flex à la
propriété display d'un conteneur, ce conteneur sera de type inline vis-à-vis d'un
autre conteneur.
Nous allons reprendre notre fichier CSS précédent afin d'apporter une couleur de
fond au conteneur.
#conteneur {

display: flex;
background-color:#CCC;

}
.contenu1 {

background-color:#FFC;
padding: 20px;

}
.contenu2 {

background-color:#ff3;
padding: 20px;

}
.contenu3 {

background-color:#FCF;
padding: 20px;

}

Observons le résultat dans notre navigateur, à l'appel du fichier index.html

Figure 8-1 : Background-color dans le conteneur

9782340-035294_001_224.indd 1219782340-035294_001_224.indd 121 19/09/2019 13:3919/09/2019 13:39

122 Chapitre 8

Ici nous pouvons confirmer que le conteneur qui a la propriété display de valeur
flex, a un comportement de type bloc puisque sa couleur de fond occupe toute la
largeur de l'écran.

8.2. Plusieurs conteneurs flex
Ici nous allons voir qu'il est donc tout à fait possible d'avoir plusieurs conteneurs
sur une même page web et que ces conteneurs se comporteront entre eux de façon
bloc ou inline selon la valeur de leur propriété display. Pour cela nous allons créer
deux conteneurs dans notre fichier index.html
<!doctype html>
<html>
<head>

<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />

</head>
<body>

<div id="conteneurA">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
<div id="conteneurB">

<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Notre fichier HTML contient à présent deux conteneurs, le conteneur A et le
conteneur B. Ces deux conteneurs auront le même contenu. A savoir les contenus
1, 2 et 3.
Apportons à présent une modification au niveau de la feuille de style CSS en
déclarant un style pour le conteneur A et pour le conteneur B. Nous leur
donnerons à tous les deux, une valeur flex à leur propriété display. En revanche
nous leur donnerons une couleur de fond différente afin de bien les distinguer dans
notre navigateur web.

9782340-035294_001_224.indd 1229782340-035294_001_224.indd 122 19/09/2019 13:3919/09/2019 13:39

La différence entre flex et inline-flex 123

Voici notre feuille de style CSS.
#conteneurA {

display: flex;
background-color:#CCC;

}
#conteneurB {

display: flex;
background-color:#000;

}
.contenu1 {

background-color:#FFC;
padding: 20px;

}
.contenu2 {

background-color:#ff3;
padding: 20px;

}
.contenu3 {

background-color:#FCF;
padding: 20px;

}

Voila le résultat de ce code dans un navigateur :

Figure 8-2 : Deux conteneurs flex

Nous voyons bien ici que ces deux conteneurs ont un comportement de type bloc,
puisque leur couleur de fond respective prend bien toute la largeur de l'écran,
obligeant ainsi le second conteneur à commencer à la ligne suivante.
Nous venons de démontrer que la valeur flex donnée à la propriété display d'un
conteneur le rendait de type bloc vis-à-vis des autres conteneurs.

9782340-035294_001_224.indd 1239782340-035294_001_224.indd 123 19/09/2019 13:3919/09/2019 13:39

124 Chapitre 8

8.3. Plusieurs conteneurs inline-flex
Reprenons notre fichier CSS et modifions la valeur de la propriété display de nos
deux conteneurs en choisissant cette fois la valeur inline-flex. Voila à quoi va à
présent ressembler notre fichier style.css
#conteneurA {

display: inline-flex;
background-color:#CCC;

}
#conteneurB {

display: inline-flex;
background-color:#000;

}
.contenu1 {

background-color:#FFC;
padding: 20px;

}
.contenu2 {

background-color:#ff3;
padding: 20px;

}
.contenu3 {

background-color:#FCF;
padding: 20px;

}

Nous ne touchons pas au fichier HTML que nous appelons dans notre navigateur.
Voici ce que nous obtenons à l'écran :

Figure 8-3 : deux conteneurs inline-flex

Nous voyons bien ici que ces deux conteneurs ont un comportement de type inline,
puisque les voici à présent l'un à côté de l'autre sur l'écran. Nous venons de
démontrer que la valeur inline-flex donnée à la propriété display d'un conteneur le
rendait de type inline vis-à-vis des autres conteneurs.

9782340-035294_001_224.indd 1249782340-035294_001_224.indd 124 19/09/2019 13:3919/09/2019 13:39

La différence entre flex et inline-flex 125

8.4. Conclusion de ce chapitre
Lorsque des conteneurs ont pour valeur flex à leur propriété display, ils sont alors
de type bloc les uns vis-à-vis des autres.
Lorsque des conteneurs ont pour valeur inline-flex à leur propriété display, ils sont
alors de type inline les uns vis-à-vis des autres.
Il est également important de se rappeler qu'à partir du moment où un conteneur
est déclaré flex ou inline-flex, alors ses différents contenus seront des éléments
flexibles.

9782340-035294_001_224.indd 1259782340-035294_001_224.indd 125 19/09/2019 13:3919/09/2019 13:39

9782340-035294_001_224.indd 1269782340-035294_001_224.indd 126 19/09/2019 13:3919/09/2019 13:39

Chapitre 9
Définir la direction des contenus

9.1. Une propriété CSS liée à la direction
Nous avons vu que le fait d'avoir écrit un display:flex dans les styles du conteneur
avait placé automatiquement les différents contenus les uns à côté des autres et non
plus les uns en dessous des autres comme ils l'étaient initialement. Nous allons à
présent modifier ce nouveau comportement en utilisant une nouvelle propriété qui
sera elle aussi placée dans les styles du conteneur. Cette nouvelle propriété va nous
permettre de pouvoir établir la direction dans laquelle vont se positionner les
différents contenus. Lorsque l'on parle de direction, cela signifie que l'on parle de
lignes et de colonnes. Nous allons donc pouvoir décider si nos contenus seront
alignés en ligne ou bien empilés en colonne. La propriété qui va être utilisée pour
réaliser cela est la propriété flex-direction.

9.2. Diriger nos contenus en ligne
A partir du moment où nous avons défini un comportement flex pour un conteneur,
alors ses contenus sont affichés en ligne. Cela signifie que la valeur par défaut de la
propriété flex-direction est une valeur qui place les contenus en ligne. Cette valeur
est row, qui signifie ligne en français. Voici comment elle se déclare.
flex-direction: row;

Reprenons notre fichier style.css en ne conservant qu'un seul conteneur à qui nous
allons appliquer la nouvelle propriété flex-direction
#conteneur {

background-color:#CCC;
display: flex;
flex-direction: row;

}
.contenu1 {

background-color:#FFC;
padding: 20px;

}
.contenu2 {

background-color:#ff3;
padding: 20px;

9782340-035294_001_224.indd 1279782340-035294_001_224.indd 127 19/09/2019 13:3919/09/2019 13:39

128 Chapitre 9

}
.contenu3 {

background-color:#FCF;
padding: 20px;

}

Voici notre fichier index.html
<!doctype html>
<html>
<head>

<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />

</head>
<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

En appelant notre fichier index.html dans notre navigateur, voici ce que nous
obtenons à l'écran.

Figure 9-1 : Résultat de la propriété flex-direction ayant pour valeur row

Nos contenus sont alignés les uns à côté des autres exactement comme
précédemment. Il ne s'est strictement rien passé. Comme nous l'avons dit plus
haut, la valeur row est la valeur par défaut de la propriété flex-direction. Donc que
la propriété flex-direction soit déclarée avec valeur row ou bien qu'elle ne soit pas
déclarée, le résultat sera forcément le même.
A partir du moment où un conteneur a une propriété display:flex ou display:inline-
flex, ses contenus se postionneront en ligne et de gauche à droite.

9782340-035294_001_224.indd 1289782340-035294_001_224.indd 128 19/09/2019 13:3919/09/2019 13:39

Définir la direction des contenus 129

9.3. Diriger nos contenus en colonne
Nous avons dit plus haut que la propriété flex-direction nous permettait de diriger
nos contenus soit sur une ligne, soit sur une colonne. Voyons donc maintenant
comment diriger nos contenus en colonne. Pour cela il suffit simplement de donner
la valeur column à la propriété flex-direction, comme ceci.
flex-direction: column;

Reprenons notre fichier style.css et modifions la valeur de la propriété flex-
direction du conteneur.
#conteneur {

background-color:#CCC;
display: flex;
flex-direction: column;

}
.contenu1 {

background-color:#FFC;
padding: 20px;

}
.contenu2 {

background-color:#ff3;
padding: 20px;

}
.contenu3 {

background-color:#FCF;
padding: 20px;

}

Cette fois nous avons demandé que nos contenus soient empilés en colonne.
Voyons voir le résultat de cette nouvelle feuille de style. Nous conservons le même
fichier HTML que précédemment.

Figure 9-2 : Résultat de la propriété flex-direction ayant pour valeur column

9782340-035294_001_224.indd 1299782340-035294_001_224.indd 129 19/09/2019 13:3919/09/2019 13:39

130 Chapitre 9

Nos contenus sont donc bien empilés en colonne et non alignés en ligne. En
revanche, cette fois, nous voyons que leur largeur ne dépend plus de leur contenu
comme le faisait l'alignement en ligne. Nous aurons l'occasion de reparler plus loin
dans ce livre de ce comportement.

9.4. Diriger nos contenus en ligne inversée
Nous venons de voir qu'il est possible de diriger nos contenus soit en ligne, soit en
colonne. Ici nous allons voir qu'il est également possible d'inverser la direction de
nos contenus lorsque ceux-ci sont alignés en ligne. Pour cela nous utilisons la
valeur row-reverse à la propriété flex-direction, comme ceci.
flex-direction: row-reverse;

Reprenons notre fichier style.css et modifions la valeur de la propriété flex-
direction du conteneur.
#conteneur {

background-color:#CCC;
display: flex;
flex-direction: row-reverse;

}
.contenu1 {

background-color:#FFC;
padding: 20px;

}
.contenu2 {

background-color:#ff3;
padding: 20px;

}
.contenu3 {

background-color:#FCF;
padding: 20px;

}

Cette fois nous venons de demander à notre conteneur d'afficher ses contenus en
ligne inversée. Voyons le résultat de cette demande dans notre navigateur en
appelant notre fichier index.html que nous ne modifions pas.

9782340-035294_001_224.indd 1309782340-035294_001_224.indd 130 19/09/2019 13:3919/09/2019 13:39

Définir la direction des contenus 131

Voici ce que nous renvoi notre navigateur :

Figure 9-3 : Résultat de la propriété flex-direction ayant pour valeur row-reverse

Ici nous pouvons observer que nos contenus sont bien affichés en ligne, grâce à la
valeur row, mais qu'ils sont affichés de façon inversée, grâce à la valeur reverse.
Donc en donnant la valeur row-reverse à la propriété flex-direction d'un conteneur,
ses contenus s'afficheront les uns à côté des autres mais de façon inversée. Le début
se retrouvera à droite de l'écran et non plus à gauche. Cela signifie que sans toucher
au fichier HTML, nous pouvons inverser très facilement la direction des contenus.

9.5. Diriger nos contenus en colonne inversée
Précédemment nous avons vu qu'il était possible d'inverser la direction des
contenus lorsque ceux-ci étaient en ligne. Maintenant nous allons voir qu'il est
également possible d'inverser les contenus lorsque ceux-ci sont empilés en colonne.
Et cela va se faire grâce à la valeur column-reverse de la propriété flex-direction.
Comme ceci.
flex-direction: column-reverse;

Reprenons notre fichier style.css et modifions la valeur de la propriété flex-
direction du conteneur.
#conteneur {

background-color:#CCC;
display: flex;
flex-direction: column-reverse;

}
.contenu1 {

background-color:#FFC;
padding: 20px;

}
.contenu2 {

background-color:#ff3;
padding: 20px;

}
.contenu3 {

background-color:#FCF;

9782340-035294_001_224.indd 1319782340-035294_001_224.indd 131 19/09/2019 13:3919/09/2019 13:39

132 Chapitre 9

padding: 20px;
}

Cette fois nous venons de demander à notre conteneur d'afficher ses contenus en
colonne inversée. Voyons le résultat de cette demande dans notre navigateur en
appelant notre fichier index.html que nous ne modifions pas.

Figure 9-4 : Résultat de la propriété flex-direction ayant pour valeur column-reverse

Ici nous pouvons observer que nos contenus sont bien affichés en colonne, grâce à
la valeur column, mais qu'ils sont affichés de façon inversée, grâce à la valeur
reverse. Donc en donnant la valeur column-reverse à la propriété flex-direction
d'un conteneur, ses contenus s'afficheront les uns au-dessus des autres mais de
façon inversée. Le début se retrouvera en bas du conteneur et non plus en haut.
Cela signifie que sans toucher au fichier HTML, nous pouvons inverser très
facilement la direction des contenus.

9.6. Conclusion
Une fois que l'on a défini un conteneur en display:flex (ou display:inline-flex)
alors on accède à la propriété flex-direction qui nous permet de pouvoir donner une
direction à nos contenus. Et cela sans jamais modifier notre code HTML.

9782340-035294_001_224.indd 1329782340-035294_001_224.indd 132 19/09/2019 13:3919/09/2019 13:39

Chapitre 10
Le retour à la ligne

10.1. Une propriété CSS liée au retour à la ligne
Nous venons de voir qu'il est possible de définir la direction des contenus. Ici nous
allons voir qu'il est également possible de définir un retour ou non à la ligne des
différents contenus et cela grâce à une nouvelle propriété CSS liée à flexbox. La
propriété qui va être utilisée pour réaliser cela est la propriété flex-wrap.
La valeur par défaut de cette propriété CSS est la valeur nowrap qui signifie que
les contenus ne doivent pas revenir à la ligne. Par conséquent, en définissant un
conteneur de type flex, alors par défaut tous ses contenus seront affichés les uns à
la suite des autres sans jamais revenir à la ligne.

10.2. Empêcher le retour à la ligne des contenus
Nous avons vu qu'à partir du moment où nous avons défini un comportement flex
pour un conteneur alors ses contenus sont affichés en ligne. Ce qu'il faut
également savoir, si la largeur totale des contenus dépasse la largeur du conteneur,
les contenus ne reviendront pas à la ligne et continueront à s'afficher les uns à côté
des autres quitte à sortir du conteneur. Ceci démontre un comportement par défaut
de flexbox, empêcher le retour à la ligne des contenus. Tout ceci est régi par la
propriété CSS qui se nomme flex-wrap. Sa valeur par défaut est nowrap, qui
signifie ne pas revenir à la ligne. Voici comment elle se déclare.
flex-wrap: nowrap;

Reprenons notre fichier style.css à qui nous allons appliquer la nouvelle propriété
flex-wrap. Nous n'appliquerons pas la propriété flex-direction car nous souhaitons
afficher nos contenus en ligne, les uns à côté des autres. Et c'est précisément la
valeur par défaut de cette propriété, comme nous l'avons vu plus haut.
#conteneur {

background-color:#CCC;
display: flex;
flex-wrap: nowrap;

}
.contenu1 {

background-color:#FFC;
padding: 20px;

}

9782340-035294_001_224.indd 1339782340-035294_001_224.indd 133 19/09/2019 13:3919/09/2019 13:39

134 Chapitre 10

.contenu2 {
background-color:#ff3;
padding: 20px;

}
.contenu3 {

background-color:#FCF;
padding: 20px;

}

Apportons une modification à notre fichier HTML en lui ajoutant de nouveaux
contenus. Pour cela nous allons copier et coller les trois contenus, puis nous
renommerons nos nouveaux contenus en contenu 4, contenu 5 et contenu 6.
Voici notre fichier index.html
<!doctype html>
<html>
<head>

<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />

</head>
<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
<div class="contenu1">Contenu 4</div>
<div class="contenu2">Contenu 5</div>
<div class="contenu3">Contenu 6</div>

</div>
</body>
</html>

9782340-035294_001_224.indd 1349782340-035294_001_224.indd 134 19/09/2019 13:3919/09/2019 13:39

Le retour à la ligne 135

Affichons maintenant le résultat de nos fichiers, dans notre navigateur :

Figure 10-1 : Résultat de la propriété flex-wrap ayant pour valeur nowrap

Nous pouvons observer que les contenus ne reviennent pas à la ligne. Un scroll en
bas du navigateur s'est affiché pour pouvoir faire défiler tous les contenus. Nous
rappelons que ce comportement est un comportement par défaut. Donc que l'on
écrive flex-wrap:nowrap dans le style CSS du conteneur ou non, le comportement
des contenus sera celui-ci.

10.3. Autoriser le retour à la ligne des contenus
Il existe une valeur à donner à la propriété flex-wrap pour pouvoir autoriser un
retour à la ligne des contenus lorsque ceux-ci n'ont plus de place pour s'afficher les
uns à côté des autres. Cette valeur est wrap. Elle s'applique ainsi.
flex-wrap: wrap;

Nous allons appliquer cette nouvelle valeur à la propriété flex-wrap de notre
conteneur.
#conteneur {

background-color:#CCC;
display: flex;
flex-wrap: wrap;

}
.contenu1 {

background-color:#FFC;
padding: 20px;

}
.contenu2 {

background-color:#ff3;
padding: 20px;

}
.contenu3 {

9782340-035294_001_224.indd 1359782340-035294_001_224.indd 135 19/09/2019 13:3919/09/2019 13:39

136 Chapitre 10

background-color:#FCF;
padding: 20px;

}

Nous ne touchons pas au fichier index.html que nous appelons à présent dans notre
navigateur :

Figure 10-2 : Résultat de la propriété flex-wrap ayant pour valeur wrap

Nous pouvons observer que nos contenus reviennent automatiquement à la ligne
dès qu'ils n'ont plus la place pour pouvoir continuer de s'afficher les uns à côté des
autres. Et cela grâce à la valeur wrap donnée à la propriété flex-wrap.

10.4. Autoriser le retour à la ligne inversé des contenus
Il existe une troisième valeur que l'on peut donner à la propriété flex-wrap, la
valeur wrap-reverse. Cette valeur permet comme la valeur wrap, un retour à la
ligne des contenus lorsque ceux-ci n'ont plus la place de pouvoir s'afficher les uns à
côté des autres. La seule différence est qu'elle va les afficher de façon inversée.
Voyons tout de suite cela en modifiant la valeur de la propriété flex-wrap du
conteneur dans notre fichier style.css
#conteneur {

background-color:#CCC;
display: flex;
flex-wrap: wrap-reverse;

}
.contenu1 {

background-color:#FFC;
padding: 20px;

}
.contenu2 {

background-color:#ff3;
padding: 20px;

9782340-035294_001_224.indd 1369782340-035294_001_224.indd 136 19/09/2019 13:3919/09/2019 13:39

Le retour à la ligne 137

}
.contenu3 {

background-color:#FCF;
padding: 20px;

}

Observons le résultat de cette modification dans notre navigateur.

Figure 10-3 : Résultat de la propriété flex-wrap ayant pour valeur wrap-reverse

Nos contenus reviennent bien à la ligne mais cette fois en s'inversant.

10.5. Une propriété réunissant deux propriétés
Il est possible de pouvoir réunir les propriétés flex-direction et flex-wrap en une
seule propriété. Cette propriété se nomme flex-flow. Elle prend pour valeur la
valeur donnée à flex-direction puis celle donnée à flex-wrap. Par exemple, si nous
voulons un alignement en ligne des contenus et autoriser un retour à la ligne, nous
pouvons alors écrire ceci
flex-flow: row wrap;

10.6. Conclusion
Nous venons de découvrir une nouvelle propriété, la propriété flex-wrap qui
permet le retour ou non à la ligne des contenus. Nous rappelons que par défaut,
cette propriété n'autorise pas le retour à la ligne des contenus.

9782340-035294_001_224.indd 1379782340-035294_001_224.indd 137 19/09/2019 13:3919/09/2019 13:39

9782340-035294_001_224.indd 1389782340-035294_001_224.indd 138 19/09/2019 13:3919/09/2019 13:39

Chapitre 11
L'axe principal et l'axe secondaire

11.1. La notion d'axe
Nous avons vu précédemment que nous pouvons définir un alignement des
contenus en ligne ou bien en colonne. Pour cela nous pouvons utiliser la propriété
flex-direction. Si nous voulons un alignement des contenus en ligne alors nous
donnons la valeur row et si nous voulons un alignement en colonne alors nous
donnons la valeur column. Nous pouvons ajouter la valeur reverse dans le cas où
nous souhaitons inverser l'ordre des contenus.
En clair, nous avons deux possibilités d'alignement, soit un alignement en ligne,
c'est-à-dire suivant un axe horizontal, soit un alignement en colonne c'est-à-dire
suivant un axe vertical. Cela va nous amener à une notion importante de flexbox, la
notion d'axe principal et d'axe secondaire.

Figure 11-1 : Axe principal et axe secondaire

Lorsque nous définissons une direction en ligne (ou en ligne inversée), alors les
contenus sont affichés en ligne. Cette direction est alors définie comme étant l'axe
principal. De ce fait, tout ce qui sera affiché verticalement sera aligné suivant l'axe
secondaire.
Dans le sens inverse, lorsque nous définissons une direction en colonne (ou en
colonne inversée), alors les contenus sont affichés en colonne. Cette direction est
alors définie comme étant l'axe principal. De ce fait, tout ce qui sera affiché
horizontalement sera aligné suivant l'axe secondaire.

9782340-035294_001_224.indd 1399782340-035294_001_224.indd 139 19/09/2019 13:3919/09/2019 13:39

140 Chapitre 11

11.2. Alignement sur l'axe principal
Maintenant que nous avons vu ce que sont l'axe principal et l'axe secondaire, nous
allons alors pouvoir aborder une nouvelle propriété flex qui va nous permettre de
positionner nos contenus suivant ces axes.
Nous allons créer au niveau HTML, un conteneur qui va posséder trois boîtes div.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">

<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Au niveau de notre fichier style.css, nous allons définir une direction des contenus
en ligne au niveau du conteneur et nous allons donner une couleur de fond à
chacun des contenus ainsi qu'à notre conteneur.
#conteneur {

display: flex;
flex-direction: row;
background-color: #ccc;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}

9782340-035294_001_224.indd 1409782340-035294_001_224.indd 140 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 141

.contenu3 {
background-color: #366;
padding: 20px;

}

Voici le résultat dans un navigateur :

Figure 11-2 : Alignement des contenus suivant l'axe horizontal

11.3. Alignement horizontal
Le fait que nous soyons en flex-direction: row, l'axe principal est l'axe horizontal.
Nous rappelons que la valeur row de la propriété flex-direction est la valeur par
défaut. Cela signifie que l'axe principal par défaut est alors l'axe horizontal. Nous
allons maintenant pouvoir positionner nos éléments suivant cet axe principal grâce
à une propriété flex qui se nomme justify-content. La propriété justify-content a
plusieurs valeurs. Sa valeur par défaut est la valeur flex-start. Elle permet de
demander aux contenus de débuter à gauche du conteneur.
#conteneur {

display: flex;
flex-direction: row;
justify-content: flex-start;
background-color: #ccc;

}

Le résultat sera identique au résultat précédent puisque la valeur flex-start est la
valeur par défaut.

Figure 11-3 : On donne la valeur flex-start à la propriété justify-content

Maintenant si nous souhaitons que les contenus débutent à droite de leur conteneur
alors nous devons donner la valeur flex-end à la propriété justify-content.

9782340-035294_001_224.indd 1419782340-035294_001_224.indd 141 19/09/2019 13:3919/09/2019 13:39

142 Chapitre 11

#conteneur {
display: flex;
flex-direction: row;
justify-content: flex-end;
background-color: #ccc;

}

Voici le résultat dans un navigateur :

Figure 11-4 : On donne la valeur flex-end à la propriété justify-content

Si nous souhaitons centrer les contenus suivant l'axe horizontal alors nous donnons
la valeur center à la propriété justify-content.
#conteneur {

display: flex;
flex-direction: row;
justify-content: center;
background-color: #ccc;

}

Voici le résultat dans un navigateur :

Figure 11-5 : On donne la valeur center à la propriété justify-content

Si nous donnons la valeur space-between à la propriété justify-content alors la
première boîte sera calée à gauche de son conteneur et la dernière boîte sera calée à
droite de son conteneur. Quant aux autres boîtes, elles seront espacées par une
valeur constante.
#conteneur {

display: flex;
flex-direction: row;
justify-content: space-between;

9782340-035294_001_224.indd 1429782340-035294_001_224.indd 142 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 143

background-color: #ccc;
}

Voici le résultat dans un navigateur :

Figure 11-6 : On donne la valeur space-between à la propriété justify-content

Et enfin, si nous donnons la valeur space-around à la propriété justify-content,
alors nos différents contenus seront espacés d'une même valeur et le contenu le
plus à gauche sera espacé de la moitié de cette valeur d'espacement avec le bord
gauche de son conteneur. Il en va de même pour le contenu le plus à droite.
#conteneur {

display: flex;
flex-direction: row;
justify-content: space-around;
background-color: #ccc;

}

Voici le résultat dans un navigateur :

Figure 11-7 : On donne la valeur space-around à la propriété justify-content

11.4. Alignement vertical
Si nous voulons que nos contenus soient alignés verticalement alors nous devons
définir la valeur column à la propriété flex-direction.
Nous conservons le même code HTML que précédemment.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />

9782340-035294_001_224.indd 1439782340-035294_001_224.indd 143 19/09/2019 13:3919/09/2019 13:39

144 Chapitre 11

</head>
<body>
<div id="conteneur">

<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Quant au fichier CSS, nous demandons juste à positionner nos contenus
verticalement.
#conteneur {

display: flex;
flex-direction: column;
background-color: #ccc;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

9782340-035294_001_224.indd 1449782340-035294_001_224.indd 144 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 145

Voici le résultat dans un navigateur :

Figure 11-8 : Alignement des contenus verticalement

La conséquence de ce code est que les contenus se retrouvent empilés les uns sur
les autres et qu'ils occupent toute la largeur de leur conteneur. Une autre
conséquence est que l'axe principal est devenu l'axe vertical. Et donc par défaut les
contenus sont alignés suivant cet axe vertical. Afin de mieux apprécier cet
alignement, nous allons donner une hauteur à notre conteneur.
#conteneur {

display: flex;
flex-direction: column;
background-color: #ccc;
height: 300px;

}

Voici le résultat dans un navigateur :

Figure 11-9 : On donne une hauteur au conteneur

9782340-035294_001_224.indd 1459782340-035294_001_224.indd 145 19/09/2019 13:3919/09/2019 13:39

146 Chapitre 11

Grâce au fait que l'axe principal soit maintenant l'axe vertical, alors la propriété
justify-content va aligner les contenus suivant cet axe vertical. Nous avons dit
précédemment que la valeur par défaut de la propriété justify-content est la valeur
flex-start. Ici cette valeur fera débuter les contenus suivant le bord haut de leur
conteneur.
#conteneur {

display: flex;
flex-direction: column;
justify-content: flex-start;
background-color: #ccc;
height: 300px;

}

Voici le résultat dans un navigateur :

Figure 11-10 : On donne la valeur flex-start à la propriété justify-content

Le résultat est identique au résultat de la figure 11-9, puisque la valeur flex-start est
la valeur par défaut de la propriété justify-content.
Si nous reprenons la valeur flex-end que nous avons vu précédemment et que nous
la donnons à la propriété justify-content alors les contenus débuteront sur le bord
bas de leur conteneur.
#conteneur {

display: flex;
flex-direction: column;
justify-content: flex-end;
background-color: #ccc;

9782340-035294_001_224.indd 1469782340-035294_001_224.indd 146 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 147

height: 300px;
}

Voici le résultat dans un navigateur :

Figure 11-11 : On donne la valeur flex-end à la propriété justify-content

De la même façon, si nous voulons centrer les contenus suivant leur axe principal
qui est l'axe vertical, alors nous donnons la valeur center à la propriété justify-
content.
#conteneur {

display: flex;
flex-direction: column;
justify-content: center;
background-color: #ccc;
height: 300px;

}

9782340-035294_001_224.indd 1479782340-035294_001_224.indd 147 19/09/2019 13:3919/09/2019 13:39

148 Chapitre 11

Voici le résultat dans un navigateur :

Figure 11-12 : On donne la valeur center à la propriété justify-content

Si nous donnons la valeur space-between à la propriété justify-content alors la
première boîte sera calée en haut de son conteneur et la dernière boîte sera calée en
bas de son conteneur. Quant aux autres boîtes, elles seront espacées par une valeur
constante.
#conteneur {

display: flex;
flex-direction: column;
justify-content: space-between;
background-color: #ccc;
height: 300px;

}

9782340-035294_001_224.indd 1489782340-035294_001_224.indd 148 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 149

Voici le résultat dans un navigateur :

Figure 11-13 : On donne la valeur space-between à la propriété justify-content

Et enfin, si nous donnons la valeur space-around à la propriété justify-content,
alors nos différents contenus seront espacés d'une même valeur et le contenu le
plus haut sera espacé de la moitié de cette valeur d'espacement avec le bord haut de
son conteneur. Il en va de même pour le contenu le plus bas.
#conteneur {

display: flex;
flex-direction: column;
justify-content: space-around;
background-color: #ccc;
height: 300px;

}

9782340-035294_001_224.indd 1499782340-035294_001_224.indd 149 19/09/2019 13:3919/09/2019 13:39

150 Chapitre 11

Voici le résultat dans un navigateur :

Figure 11-14 : On donne la valeur space-around à la propriété justify-content

11.5. Récapitulatif de ce que nous savons
Nous savons qu'il existe avec la technologie flexbox, un axe principal et un axe
secondaire. Ces deux axes sont définis par la propriété flex-direction. Si la
propriété flex-direction a pour valeur row, alors l'axe principal sera l'axe
horizontal. Il est à préciser que la valeur row est la valeur par défaut. Cela signifie
que si la propriété flex-direction n'est pas déclarée, alors l'axe principal sera l'axe
horizontal.

Figure 11-15 : L'axe principal est l'axe horizontal

9782340-035294_001_224.indd 1509782340-035294_001_224.indd 150 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 151

Si la propriété flex-direction a pour valeur column, alors l'axe principal sera l'axe
vertical. Le fait d'avoir défini un axe principal nous permet de pouvoir aligner les
contenus le long de cet axe, grâce à la propriété justify-content.

Figure 11-16 : L'axe secondaire est l'axe vertical

Le fait d'avoir défini un axe secondaire nous permet de pouvoir aligner les
contenus le long de cet axe, grâce à la propriété align-items. C'est ce que nous
allons voir à présent.

11.6. Alignement sur l'axe secondaire
Nous allons reprendre le même code HTML que précédemment.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">

<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

9782340-035294_001_224.indd 1519782340-035294_001_224.indd 151 19/09/2019 13:3919/09/2019 13:39

152 Chapitre 11

</div>
</body>
</html>

Au niveau CSS, nous allons centrer les contenus le long de leur axe principal et
donner la valeur row à la propriété flex-direction
#conteneur {

display: flex;
flex-direction: row;
justify-content: center;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

Voici le résultat obtenu dans un navigateur :

Figure 11-17 : Alignement centré des contenus le long de l'axe principal

9782340-035294_001_224.indd 1529782340-035294_001_224.indd 152 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 153

Concernant la hauteur des contenus, nous pouvons constater que celle-ci prend
toute la hauteur disponible. Dans notre code CSS, nous avons donné une hauteur à
notre conteneur. Nous lui avons donné une hauteur de 300 pixels. Et bien par
défaut, les contenus occupent toute cette hauteur. Cette hauteur définie l'axe
secondaire.
Précédemment nous avons vu qu'il existe une propriété CSS qui nous permet de
positionner les contenus le long de leur axe secondaire. Cette propriété se nomme
align-items. Nous pouvons donc déjà conclure que sa valeur par défaut permet aux
contenus d'occuper tout l'espace disponible de l'axe secondaire. Cette valeur porte
le nom de stretch. Ajoutons cette nouvelle propriété au code CSS de notre
conteneur.
#conteneur {

display: flex;
flex-direction: row;
justify-content: center;
align-items: stretch;
background-color: #ccc;
height: 300px;

}

Nous constatons que le résultat obtenu reste inchangé :

Figure 11-18 : On donne la valeur stretch à la propriété align-items

Une autre valeur que nous pouvons donner à la propriété align-items est la valeur
flex-start. Nous avons déjà étudié cette valeur avec la propriété justify-content.
Elle va nous donner exactement le même résultat mais cette fois le long de l'axe
secondaire. Le fait de ne plus avoir la valeur par défaut stretch fera que les
contenus auront pour hauteur ce qu'ils contiennent.
#conteneur {

display: flex;
flex-direction: row;

9782340-035294_001_224.indd 1539782340-035294_001_224.indd 153 19/09/2019 13:3919/09/2019 13:39

154 Chapitre 11

justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}

Voici le résultat obtenu dans un navigateur :

Figure 11-19 : On donne la valeur flex-start à la propriété align-items

La valeur flex-start nous permet de faire débuter les contenus en haut de l'axe
secondaire qui ici est l'axe vertical. Si nous voulons faire débuter les contenus en
bas de l'axe secondaire, nous allons alors utiliser la propriété flex-end.
#conteneur {

display: flex;
flex-direction: row;
justify-content: center;
align-items: flex-end;
background-color: #ccc;
height: 200px;

}

9782340-035294_001_224.indd 1549782340-035294_001_224.indd 154 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 155

Voici le résultat obtenu dans un navigateur :

Figure 11-20 : On donne la valeur flex-end à la propriété align-items

Si nous voulons centrer nos contenus le long de leur axe secondaire, il nous suffit
simplement de donner la valeur center à la propriété align-items.
#conteneur {

display: flex;
flex-direction: row;
justify-content: center;
align-items: center;
background-color: #ccc;
height: 200px;

}

Voici le résultat obtenu dans un navigateur :

Figure 11-21 : On donne la valeur center à la propriété align-items

9782340-035294_001_224.indd 1559782340-035294_001_224.indd 155 19/09/2019 13:3919/09/2019 13:39

156 Chapitre 11

11.7. Inversion de l'axe principal
Nous conservons le même code HTML que précédemment.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">

<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Concernant le code CSS, nous allons modifier la valeur de la propriété flex-
direction en lui donnant la valeur column, de façon à modifier l'axe principal.
Ainsi l'axe vertical deviendra l'axe principal et l'axe horizontal deviendra l'axe
secondaire. Nous demanderons à centrer les contenus suivant leur axe principal.
#conteneur {

display: flex;
flex-direction: column;
justify-content: center;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}

9782340-035294_001_224.indd 1569782340-035294_001_224.indd 156 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 157

.contenu3 {
background-color: #366;
padding: 20px;

}

Voici le résultat obtenu dans un navigateur :

Figure 11-22 : On donne la valeur center à la propriété justify-content

Les contenus se retrouvent bien centrés par rapport à l'axe principal qui est l'axe
vertical, et ils ont un comportement de type stretch suivant l'axe secondaire qui est
l'axe horizontal. La valeur stretch étant la valeur par défaut de la propriété align-
items.
#conteneur {

display: flex;
flex-direction: column;
justify-content: center;
align-item: stretch;
background-color: #ccc;
height: 200px;

}

9782340-035294_001_224.indd 1579782340-035294_001_224.indd 157 19/09/2019 13:3919/09/2019 13:39

158 Chapitre 11

Le résultat obtenu sera équivalent au résultat précédemment obtenu :

Figure 11-23 : On donne la valeur stretch à la propriété align-items

En donnant la valeur flex-start à la propriété align-items, les contenus vont se
retrouver calés à gauche de leur axe secondaire et par là-même ils perdront leur
valeur stretch et donc ils auront pour largeur ce qu'ils possèdent.
#conteneur {

display: flex;
flex-direction: column;
justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}

Voici le résultat obtenu dans un navigateur

Figure 11-24 : On donne la valeur flex-start à la propriété align-items

Et pour caler les contenus à la fin de l'axe secondaire qui est l'axe horizontal, nous
donnons la valeur flex-end à la propriété align-items.

9782340-035294_001_224.indd 1589782340-035294_001_224.indd 158 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 159

#conteneur {
display: flex;
flex-direction: column;
justify-content: center;
align-items: flex-end;
background-color: #ccc;
height: 200px;

}

Voici le résultat obtenu dans un navigateur

Figure 11-25 : On donne la valeur flex-end à la propriété align-items

Si nous voulons centrer les contenus selon leur axe secondaire, il nous suffit de
donner la valeur center à la propriété align-items.
#conteneur {

display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
background-color: #ccc;
height: 200px;

}

9782340-035294_001_224.indd 1599782340-035294_001_224.indd 159 19/09/2019 13:3919/09/2019 13:39

160 Chapitre 11

Voici le résultat obtenu dans un navigateur :

Figure 11-26 : On donne la valeur center à la propriété align-items

11.8. Alignement d'un contenu particulier
Reprenons le même code HTML que précédemment.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">

<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Au niveau CSS, nous reprenons là aussi le même code que précédemment et nous
donnons la valeur flex-start à la propriété align-items qui gère l'alignement de l'axe
secondaire. L'axe secondaire étant ici l'axe horizontal.
#conteneur {

display: flex;
flex-direction: column;

9782340-035294_001_224.indd 1609782340-035294_001_224.indd 160 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 161

justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

Voici le résultat de ce code dans un navigateur :

Figure 11-27 : Les contenus sont calés au début de l'axe secondaire

Nous allons à présent voir comment modifier l'alignement d'un contenu en
particulier, sans toucher à l'alignement des autres contenus. Par exemple, nous
allons demander au contenu 2 de s'afficher à la fin de l'axe secondaire, pendant que
les contenus 1 et 3 restent alignés au début de l'axe secondaire. Pour cela nous
avons à notre disposition la propriété align-self. Cette propriété n'est pas à placer
dans les propriétés CSS du conteneur, mais dans les propriétés CSS du contenu que
l'on souhaite déplacer. Ici nous avons dit que nous souhaitons déplacer le contenu
2, alors c'est à lui que nous allons donner la propriété align-self. Et comme nous
souhaitons que ce contenu se retrouve à la fin de l'axe secondaire, alors nous lui

9782340-035294_001_224.indd 1619782340-035294_001_224.indd 161 19/09/2019 13:3919/09/2019 13:39

162 Chapitre 11

donnons la valeur flex-end.
#conteneur {

display: flex;
flex-direction: column;
justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;
align-self: flex-end;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

Voici le résultat de ce code dans un navigateur :

Figure 11-28 : Le contenu 2 est calé à la fin de l'axe secondaire

Ce qu'il faut savoir sur cette propriété align-self, c'est qu'elle prend les mêmes
valeurs que celles que nous pouvons donner à la propriété align-items. A savoir, la
valeur flex-start, la valeur flex-end, la valeur center ainsi que la valeur stretch.

9782340-035294_001_224.indd 1629782340-035294_001_224.indd 162 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 163

Il est important également de savoir que la propriété align-self est prioritaire sur la
propriété align-items. Cela signifie que par défaut l'ensemble des contenus vont
s'aligner le long de leur axe secondaire comme la propriété CSS align-items leur a
demandé, et un ou plusieurs de ces contenus vont s'aligner suivant leur axe
secondaire comme la propriété align-self leur a demandé, ignorant ainsi la
demande par défaut.
Donc, si nous voulons centrer le contenu 2 par rapport à son axe secondaire, alors
que l'ensemble des contenus sont calés au début de leur axe secondaire, il nous
suffit tout simplement de donner la valeur center à la propriété align-self du
contenu 2.
#conteneur {

display: flex;
flex-direction: column;
justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;
align-self: center;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

9782340-035294_001_224.indd 1639782340-035294_001_224.indd 163 19/09/2019 13:3919/09/2019 13:39

164 Chapitre 11

Voici le résultat dans un navigateur :

Figure 11-29 : Le contenu2 est centré suivant son axe secondaire

Si nous donnons la valeur flex-start à la propriété align-self du contenu 2, alors le
contenu 2 se retrouvera au début de son axe secondaire.
.contenu2 {

background-color: #ff3;
padding: 20px;
align-self: flex-start;

}

Voici le résultat dans un navigateur :

Figure 11-30 : Le contenu2 est calé au début de l'axe secondaire

Et si nous voulons que le contenu 2 occupe toute la largeur qui lui est alloué au
sein de son conteneur, alors nous donnons la valeur stretch au contenu 2.
.contenu2 {

background-color: #ff3;
padding: 20px;
align-self: stretch;

9782340-035294_001_224.indd 1649782340-035294_001_224.indd 164 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 165

}

Voici le résultat dans un navigateur :

Figure 11-31 : Le contenu2 occupe toute la largeur de l'axe secondaire

Si nous changeons la direction de la propriété flex-direction en lui donnant pour
valeur row, alors l'axe secondaire devient l'axe vertical et en maintenant tout le
reste du code CSS, comme ceci
#conteneur {

display: flex;
flex-direction: row;
justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;
align-self: stretch;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

9782340-035294_001_224.indd 1659782340-035294_001_224.indd 165 19/09/2019 13:3919/09/2019 13:39

166 Chapitre 11

Voici le résultat dans un navigateur :

Figure 11-32 : Inversion de la direction

Pour terminer sur ce sujet, nous pouvons demander que le contenu 2 soit en bas de
son axe secondaire et que le contenu 3 se retrouve centré suivant son axe
secondaire.
#conteneur {

display: flex;
flex-direction: row;
justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;
align-self: flex-end;

}
.contenu3 {

background-color: #366;
padding: 20px;
align-self: center;

}

9782340-035294_001_224.indd 1669782340-035294_001_224.indd 166 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 167

Voici le résultat dans un navigateur :

Figure 11-33 : Contenu 2 positionné en bas et contenu3 centré

11.9. Alignement de plusieurs lignes ou colonnes
Reprenons le même code HTML que précédemment.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">

<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Concernant le CSS, nous maintenons une direction en ligne uniquement.
#conteneur {

display: flex;
flex-direction: row;
background-color: #ccc;
height: 200px;

9782340-035294_001_224.indd 1679782340-035294_001_224.indd 167 19/09/2019 13:3919/09/2019 13:39

168 Chapitre 11

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

Voici le résultat dans un navigateur :

Figure 11-34 : Direction des contenus en ligne

Nous allons à présent dupliquer trois fois, les contenus au niveau HTML
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">

<div class="contenu1">Contenu 1</div>

9782340-035294_001_224.indd 1689782340-035294_001_224.indd 168 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 169

<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Nous ne touchons pas au code CSS, voici ce que nous obtenons dans un navigateur

Figure 11-35 : Duplication des contenus

Par défaut, il n'y a pas de retour à la ligne, les contenus s'affichent les uns à côté
des autres. Pour rémédier à ce problème, il nous suffit d'écrire la propriété flex-
wrap et de lui donner pour valeur wrap. Cette propriété est à écrire dans les
propriétés CSS du conteneur.
#conteneur {

display: flex;
flex-direction: row;
flex-wrap: wrap;
background-color: #ccc;
height: 200px;

}

9782340-035294_001_224.indd 1699782340-035294_001_224.indd 169 19/09/2019 13:3919/09/2019 13:39

170 Chapitre 11

Voici le résultat dans un navigateur :

Figure 11-36 : Mise en place d'un retour à la ligne

Les contenus reviennent à la ligne selon la largeur de leur contenu. Plus le contenu
sera large et moins nous aurons de lignes. Dans le cas contraire, plus le contenu
sera petit et plus nous aurons de lignes.
Maintenant que nous avons défini des lignes, nous pouvons alors intervenir sur ces
lignes afin de les positionner. Par exemple, nous pourrions demander que ces lignes
soient centrées suivant l'axe secondaire. L'axe secondaire étant ici l'axe vertical.
Pour cela, nous avons à notre disposition la propriété align-content que nous
devons placer dans les propriétés CSS du conteneur.
#conteneur {

display: flex;
flex-direction: row;
flex-wrap: wrap;
align-content: center;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;

9782340-035294_001_224.indd 1709782340-035294_001_224.indd 170 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 171

padding: 20px;
}

Voici le résultat dans un navigateur :

Figure 11-37 : Alignement des lignes centrées selon l'axe secondaire

Si nous souhaitons caler les lignes en haut de leur axe secondaire, il nous suffit tout
simplement de donner la valeur flex-start à la propriété align-content.
#conteneur {

display: flex;
flex-direction: row;
flex-wrap: wrap;
align-content: flex-start;
background-color: #ccc;
height: 200px;

}

Voici le résultat dans un navigateur :

Figure 11-38 : Alignement des lignes en haut de l'axe secondaire

9782340-035294_001_224.indd 1719782340-035294_001_224.indd 171 19/09/2019 13:3919/09/2019 13:39

172 Chapitre 11

Si nous souhaitons caler les lignes en bas de leur axe secondaire, il nous suffit tout
simplement de donner la valeur flex-end à la propriété align-content.
#conteneur {

display: flex;
flex-direction: row;
flex-wrap: wrap;
align-content: flex-end;
background-color: #ccc;
height: 200px;

}

Voici le résultat dans un navigateur :

Figure 11-39 : Alignement des lignes en bas de l'axe secondaire

Nous pouvons également positionner nos lignes en utilisant les valeurs space-
between et space-around.
#conteneur {

display: flex;
flex-direction: row;
flex-wrap: wrap;
align-content: space-between;
background-color: #ccc;
height: 200px;

}

9782340-035294_001_224.indd 1729782340-035294_001_224.indd 172 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 173

Voici le résultat dans un navigateur

Figure 11-40 : Alignement des lignes en space-between

Cette fois en utilisant la valeur space-around.
#conteneur {

display: flex;
flex-direction: row;
flex-wrap: wrap;
align-content: space-around;
background-color: #ccc;
height: 200px;

}

Voici le résultat dans un navigateur :

Figure 11-41 : Alignement des lignes en space-around

Et pour terminer sur la propriété align-content, nous pouvons lui donner la valeur
stretch qui est la valeur par défaut.

9782340-035294_001_224.indd 1739782340-035294_001_224.indd 173 19/09/2019 13:3919/09/2019 13:39

174 Chapitre 11

#conteneur {
display: flex;
flex-direction: row;
flex-wrap: wrap;
align-content: stretch;
background-color: #ccc;
height: 200px;

}

Voici le résultat dans un navigateur :

Figure 11-42 : Alignement des lignes en stretch

Bien entendu, nous pouvons là-aussi modifier la direction de nos contenus et de ce
fait modifier l'axe secondaire. Si nous donnons la direction en colonne, alors l'axe
secondaire sera l'axe horizontal.
#conteneur {

display: flex;
flex-direction: column;
flex-wrap: wrap;
align-content: stretch;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

9782340-035294_001_224.indd 1749782340-035294_001_224.indd 174 19/09/2019 13:3919/09/2019 13:39

L'axe principal et l'axe secondaire 175

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

Voici le résultat dans un navigateur :

Figure 11-43 : Alignement en colonne

11.10. Conclusion
Nous venons d'apprendre à positionner n'importe quel contenu au sein de son
conteneur. Les alignements de contenu se font dans tous les sens. Il suffit
simplement de définir la direction de départ et ensuite il nous est facile de
positionner un ou plusieurs contenus, grâce aux nouvelles propriétés CSS que nous
venons de découvrir.

9782340-035294_001_224.indd 1759782340-035294_001_224.indd 175 19/09/2019 13:3919/09/2019 13:39

9782340-035294_001_224.indd 1769782340-035294_001_224.indd 176 19/09/2019 13:3919/09/2019 13:39

Chapitre 12
Manipulation des contenus

12.1. Gérer les ordres d'affichage
Nous allons voir ici la propriété order. Cette propriété CSS est extrêmement
puissante car elle va nous permettre de pouvoir déplacer des contenus sans pour
autant toucher au code HTML.
Ecrivons notre fichier HTML en donnant trois boîtes à un conteneur. Ces trois
boîtes seront nommées contenu 1, contenu 2 et contenu 3, comme nous l'avons fait
précédemment.
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">

<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Au niveau du code CSS, nous demandons simplement un affichage en ligne.
#conteneur {

display: flex;
flex-direction: row;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

9782340-035294_001_224.indd 1779782340-035294_001_224.indd 177 19/09/2019 13:3919/09/2019 13:39

178 Chapitre 12

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

Voici le résultat dans un navigateur :

Figure 12-1 : Alignement horizontal des contenus

Nous souhaitons à présent placer le contenu 2 en premier, avant le contenu 1. Outre
le fait de pouvoir le modifier en HTML, en utilisant la propriété order, nous allons
pouvoir positionner les contenus dans n'importe quel ordre. Cette propriété sera à
placer dans les propriétés CSS du contenu que l'on souhaite déplacer. Il suffit
ensuite de donner un chiffre en valeur de cette propriété. Plus ce chiffre sera petit et
plus le contenu sera prioritaire par rapport aux autres contenus. La valeur par
défaut de la propriété order est la valeur 0.
#conteneur {

display: flex;
flex-direction: row;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

9782340-035294_001_224.indd 1789782340-035294_001_224.indd 178 19/09/2019 13:3919/09/2019 13:39

Manipulation des contenus 179

}
.contenu2 {

background-color: #ff3;
padding: 20px;
order: -1;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

Voici le résultat dans un navigateur :

Figure 12-2 : Le contenu 2 passe devant le contenu1

Les valeurs que nous pouvons donner à la propriété order peuvent être des valeurs
positives ou bien des valeurs négatives. Ce seront systématiquement des valeurs
entières.
Si nous souhaitons positionner le contenu 3 avant le contenu 2, alors nous donnons
une valeur inférieure à la propriété order du contenu 3.
.contenu3 {

background-color: #366;
padding: 20px;
order: -2;

}

9782340-035294_001_224.indd 1799782340-035294_001_224.indd 179 19/09/2019 13:3919/09/2019 13:39

180 Chapitre 12

Voici le résultat dans un navigateur :

Figure 12-3 : Le contenu 3 passe devant le contenu 2

Et si nous voulons positionner le contenu 2 après la contenu 1, alors nous donnons
une valeur supérieure à la propriété order du contenu 2 par rapport à celle du
contenu 1 qui par défaut a la valeur 0.
#conteneur {

display: flex;
flex-direction: row;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;
order: 1;

}
.contenu3 {

background-color: #366;
padding: 20px;
order: -2;

}

9782340-035294_001_224.indd 1809782340-035294_001_224.indd 180 19/09/2019 13:3919/09/2019 13:39

Manipulation des contenus 181

Voici le résultat dans un navigateur

Figure 12-4 : Le contenu 2 passe après le contenu 1

12.2. Augmenter la largeur d'un contenu
Nous allons voir comment nous pouvons gérer la largeur d'un contenu. Par défaut,
la largeur d'un contenu dépend de ce que contient le contenu.
Voici notre fichier HTML
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">

<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>
</body>
</html>

Et voici notre fichier CSS
#conteneur {

display: flex;
background-color: #ccc;
height: 200px;

9782340-035294_001_224.indd 1819782340-035294_001_224.indd 181 19/09/2019 13:3919/09/2019 13:39

182 Chapitre 12

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

Voici le résultat de ce code dans un navigateur :

Figure 12-5 : Les contenus occupent leur propre largeur

Si nous souhaitons que le contenu 1 ait une largeur plus grande que celle qu'il a par
défaut, alors nous pouvons lui donner la propriété flex-grow. Cette propriété a pour
valeur par défaut la valeur 0. En lui donnant la valeur 2, alors le contenu 1
occupera au minimum deux fois plus de largeur que les autres contenus.
#conteneur {

display: flex;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

9782340-035294_001_224.indd 1829782340-035294_001_224.indd 182 19/09/2019 13:3919/09/2019 13:39

Manipulation des contenus 183

flex-grow: 2;
}
.contenu2 {

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;

}

Voici le résultat dans un navigateur :

Figure 12-6 : Le contenu 1 occupe toute la largeur restante

Si nous donnons la valeur 1 à la propriété flex-grow de chaque contenu, alors ils
occuperont tout l'espace qui leur est alloué, de façon proportionnelle.
#conteneur {

display: flex;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;
flex-grow: 1;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

9782340-035294_001_224.indd 1839782340-035294_001_224.indd 183 19/09/2019 13:3919/09/2019 13:39

184 Chapitre 12

flex-grow: 1;
}
.contenu3 {

background-color: #366;
padding: 20px;
flex-grow: 1;

}

Voici le résultat obtenu dans un navigateur :

Figure 12-7 : Les contenus occupent tout l'espace de façon proportionnelle

Et cette fois, si nous donnons la valeur 2 à la propriété flex-grow du contenu 2,
alors le contenu 2 occupera deux fois plus d'espace que les autres contenus.
#conteneur {

display: flex;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;
flex-grow: 1;

}
.contenu2 {

background-color: #ff3;
padding: 20px;
flex-grow: 2;

}

9782340-035294_001_224.indd 1849782340-035294_001_224.indd 184 19/09/2019 13:3919/09/2019 13:39

Manipulation des contenus 185

.contenu3 {
background-color: #366;
padding: 20px;
flex-grow: 1;

}

Voici le résultat obtenu dans un navigateur :

Figure 12-8 : Le contenu 2 occupe deux fois plus d'espace que les autres contenus

12.3. Diminuer ou définir la largeur d'un contenu
Si nous souhaitons diminuer la largeur d'un contenu, nous avons à notre disposition
la propriété flex-shrink. Sa valeur par défaut est 1.
Reprenons notre code HTML
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">

<div class="contenu1">Contenu 1</div>
 <div class="contenu2">Contenu 2</div>
 <div class="contenu3">Contenu 3</div>
</div>
</body>
</html>

9782340-035294_001_224.indd 1859782340-035294_001_224.indd 185 19/09/2019 13:3919/09/2019 13:39

186 Chapitre 12

Au niveau CSS, donnons la valeur 1 à la propriété flex-shrink que nous définissons
pour nos trois contenus.
#conteneur {

display: flex;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;
flex-shrink: 1;

}
.contenu2 {

background-color: #ff3;
padding: 20px;
flex-shrink: 1;

}
.contenu3 {

background-color: #366;
padding: 20px;
flex-shrink: 1;

}

Voici le résultat obtenu dans un navigateur :

Figure 12-9 : Nous donnons la valeur 1 à flex-shrink de chaque contenu

La propriété flex-basis va nous permettre de pouvoir donner une valeur de largeur
à un contenu. Par exemple, si nous donnons la valeur 0 à la propriété flex-basis du
contenu 3, alors sa largeur sera la plus petite possible.

9782340-035294_001_224.indd 1869782340-035294_001_224.indd 186 19/09/2019 13:3919/09/2019 13:39

Manipulation des contenus 187

#conteneur {
display: flex;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;
flex-basis: 0;

}

Voici le résultat obtenu dans un navigateur :

Figure 12-10 : La largeur du contenu 3 est la plus petite possible

La valeur par défaut de la propriété flex-basis est la valeur auto.
#conteneur {

display: flex;
background-color: #ccc;
height: 200px;

}

9782340-035294_001_224.indd 1879782340-035294_001_224.indd 187 19/09/2019 13:3919/09/2019 13:39

188 Chapitre 12

.contenu1 {
background-color: #f9f;
padding: 20px;

}
.contenu2 {

background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;
flex-basis: auto;

}

Voici le résultat obtenu dans un navigateur :

Figure 12-11 : La valeur auto de flex-basis est la valeur par défaut

Grâce à la propriété flex-basis, il est également possible de définir une largeur de
contenu en pixel.
#conteneur {

display: flex;
background-color: #ccc;
height: 200px;

}
.contenu1 {

background-color: #f9f;
padding: 20px;

}

9782340-035294_001_224.indd 1889782340-035294_001_224.indd 188 19/09/2019 13:3919/09/2019 13:39

Manipulation des contenus 189

.contenu2 {
background-color: #ff3;
padding: 20px;

}
.contenu3 {

background-color: #366;
padding: 20px;
flex-basis: 100px;

}

Voici le résultat obtenu dans un navigateur

Figure 12-12 : On définie 100 pixels de large pour le contenu 3

12.4. La super propriété flex
Il existe une propriété qui regroupe les trois propriétés que nous venons de voir. Il
s'agit de la propriété flex. En définissant la propriété flex, nous définissons alors la
propriété flex-grow, flex-shrink et flex-basis.
Si nous devions définir une propriété flex pour le contenu 3 que nous avons définie
précédemment, alors nous lui donnerions en première valeur la valeur 0 puisqu'il
s'agit de la valeur par défaut de la propriété flex-grow. Nous lui donnerions la
valeur 1 en deuxième valeur puisqu'il s'agit de la valeur par défaut de la propriété
flex-shrink. Et enfin, nous lui donnerions la valeur 100px puisqu'il s'agit de la
valeur que nous avons définie pour la propriété flex-basis.
.contenu3 {

background-color: #366;
padding: 20px;
flex: 0 1 100px;

}

9782340-035294_001_224.indd 1899782340-035294_001_224.indd 189 19/09/2019 13:3919/09/2019 13:39

190 Chapitre 12

Nous obtiendrions exactement le même résultat que précédemment :

Figure 12-13 : Résultat de la propriété flex

12.5. Conclusion
Nous sommes maintenant en mesure de pouvoir également gérer la largeur des
différents contenus. Grâce à la technologie flexbox, nous pouvons rendre
l'ensemble de nos boîtes HTML flexibles et les manipuler exactement comme nous
en avons envie. Et cela dans tous les sens.
Une dernière précision, il est très important de connaître la valeur par défaut des
propriétés flex que nous venons de voir ensemble.

9782340-035294_001_224.indd 1909782340-035294_001_224.indd 190 19/09/2019 13:3919/09/2019 13:39

Chapitre 13
Création d'une maquette

13.1. Présentation du travail
Afin de consolider nos nouvelles connaissances sur la technologie flexbox, nous
allons créer la maquette d'un site totalement responsive. Voici à quoi devra
ressembler notre maquette sur un écran d'ordinateur.

Figure 13-1 : Mise en page pour un écran d'ordinateur

Et voici à qui devra ressembler notre maquette pour les écrans inférieurs :

Figure 13-2 : Mise en page pour les écrans inférieurs

9782340-035294_001_224.indd 1919782340-035294_001_224.indd 191 19/09/2019 13:3919/09/2019 13:39

192 Chapitre 13

13.2. Première partie
La première chose que nous avons à faire est de mettre en place nos balises
structurantes HTML5. Nous allons donc créer notre fichier HTML
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="main">
 <header>HEADER</header>

 <div id="wrapper">
 <nav>NAV</nav>
 <section>SECTION</section>
 <aside>ASIDE</aside>
 </div>

 <footer>FOOTER</footer>
</div>
</body>
</html>

Nous avons enfermé nos balises structurantes HTML5 dans une boîte à laquelle
nous avons donné pour identifiant main. Cette boîte sera le conteneur de nos
balises structurantes HTML5. Nous avons également créé une boîte qui a pour
identifiant wrapper et nous y avons enfermé les balises nav, section et aside.
En conclusion, nous pouvons définir trois grandes zones à l'intérieur de notre boîte
dont l'identifiant est main. La première zone sera celle du header, la seconde zone
sera celle du wrapper et la troisième et dernière zone sera celle du footer. De là,
nous pouvons établir le début de notre feuille de style CSS.
body {

background-color: black;
}
#main {

9782340-035294_001_224.indd 1929782340-035294_001_224.indd 192 19/09/2019 13:3919/09/2019 13:39

Création d'une maquette 193

display:flex;
background-color: white;
padding: 20px;
margin: 10px;
flex-direction: column;

}
#wrapper, header, footer {

background-color: grey;
padding: 20px;
margin: 5px;

}

Voici le résultat dans un navigateur

Figure 13-3 : Mise en place de trois zones

Nous en avons profité pour donner une couleur de fond au body, ainsi qu'aux
différentes zones.
La chose importante que nous avons faite ici est de donner une direction en
colonne à notre contenu, grâce à la propriété flex-direction au sein du conteneur.

13.3. Deuxième partie
Nous venons de mettre en place les bases de notre mise en page. Pour aller plus
loin sur cette mise en page, nous devons à présent positionner les contenus qui se
trouvent à l'intérieur de la boîte dont l'identifiant est wrapper. Ces contenus doivent
être positionnés en ligne. Nous devons donc définir la boîte wrapper comme étant
un conteneur et donc lui donner la propriété display avec la valeur flex. Nous en
profiterons également pour donner un style à la nav, la section ainsi que l'aside afin
de les rendre visuellement plus jolies.

9782340-035294_001_224.indd 1939782340-035294_001_224.indd 193 19/09/2019 13:3919/09/2019 13:39

194 Chapitre 13

body {
background-color: black;

}
#main {

display:flex;
background-color: white;
padding: 20px;
margin: 10px;
flex-direction: column;

}
#wrapper, header, footer {

background-color: grey;
padding: 20px;
margin: 5px;

}
#wrapper {

display:flex;
}
nav, section, aside {

background-color: yellow;
padding: 20px;
margin: 3px;

}

Voici le résultat dans un navigateur :

Figure 13-4 : Définition du wrapper en conteneur

On rappelle que par défaut, le fait de donner un display:flex à un conteneur, fera
que les contenus seront alignés suivant l'axe horizontal. On rappelle également que

9782340-035294_001_224.indd 1949782340-035294_001_224.indd 194 19/09/2019 13:3919/09/2019 13:39

Création d'une maquette 195

par défaut, les contenus nav, section et aside ont pour largeur ce qu'ils contiennent.
Si nous voulons que la section occupe toute la largeur restante, alors nous pouvons
lui donner la propriété flex-grow.
body {

background-color: black;
}
#main {

display:flex;
background-color: white;
padding: 20px;
margin: 10px;
flex-direction: column;

}
#wrapper, header, footer {

background-color: grey;
padding: 20px;
margin: 5px;

}
#wrapper {

display:flex;
}
nav, section, aside {

background-color: yellow;
padding: 20px;
margin: 3px;

}
section {

flex-grow: 2;
}

9782340-035294_001_224.indd 1959782340-035294_001_224.indd 195 19/09/2019 13:3919/09/2019 13:39

196 Chapitre 13

Voici le résultat dans un navigateur :

Figure 13-5 : On augmente la largeur de la section

Nous venons de mettre en place la mise en page souhaitée pour les écrans
d'ordinateur. Nous allons à présent nous intéresser à la mise en page souhaitée pour
les écrans inférieurs. La première chose à faire est de définir un point de rupture.
Nous allons définir ce point à 900 pixels. Ensuite, que veut-on pour les écrans
inférieurs ? Nous voulons simplement que la nav, la section ainsi que l'aside soient
empilées. Les autres zones sont déjà empilées.
body {

background-color: black;
}
#main {

display:flex;
background-color: white;
padding: 20px;
margin: 10px;
flex-direction: column;

}
#wrapper, header, footer {

background-color: grey;
padding: 20px;
margin: 5px;

}
#wrapper {

display:flex;
}
nav, section, aside {

background-color: yellow;

9782340-035294_001_224.indd 1969782340-035294_001_224.indd 196 19/09/2019 13:3919/09/2019 13:39

Création d'une maquette 197

padding: 20px;
margin: 3px;

}
section {

flex-grow: 2;
}
@media screen and (max-width:900px) {

#wrapper {
flex-direction: column;

}
nav {

order: 1;
}
aside {

order: 2;
}

}

Nous avons également modifié l'ordre d'apparition puisque l'empilement devra être
la section en premier, suivie de la nav, elle-même suivie de l'aside.

Figure 13-6 : Mise en page pour les écrans inférieurs

9782340-035294_001_224.indd 1979782340-035294_001_224.indd 197 19/09/2019 13:3919/09/2019 13:39

198 Chapitre 13

13.4. Conclusion
Avec quelques propriétés CSS issues de flexbox, il est très facile de mettre en page
des conteneurs ainsi que des contenus. La gestion du responsive en devient tout
aussi facile.
Nous venons dans ce livre d'apprendre la technologie grid ainsi que la technologie
flexbox. Dans la troisième et dernière partie de ce livre, nous allons voir comment
utiliser ces deux technologies ensembles.

9782340-035294_001_224.indd 1989782340-035294_001_224.indd 198 19/09/2019 13:3919/09/2019 13:39

Partie 3

GRID &
FLEXBOX

ENSEMBLE

9782340-035294_001_224.indd 1999782340-035294_001_224.indd 199 19/09/2019 13:3919/09/2019 13:39

9782340-035294_001_224.indd 2009782340-035294_001_224.indd 200 19/09/2019 13:3919/09/2019 13:39

Chapitre 14
Utiliser grid & flexbox ensemble

14.1. Le principe de base
Dans ce chapitre nous allons voir le principe de base de construction d'une page
web en utilisant les technologies grid et flexbox ensemble. Tout d'abord, nous
allons considérer un principe, le principe de l'entonnoir. Cela signifie clairement
que lorsque l'on cherche à mettre en page un site internet, nous partirons du général
pour terminer sur le détail.

Figure 14-1 : Le principe de l'entonnoir

La première chose que nous devons faire lorsque nous voulons créer une mise en
page, c'est tout simplement de mettre en place les balises HTML. Les balises
structurantes et non les balises de détail telles que les balises de titre ou de
paragraphe.

Figure 14-2 : Mise en page des balises structurantes

9782340-035294_001_224.indd 2019782340-035294_001_224.indd 201 19/09/2019 13:3919/09/2019 13:39

202 Chapitre 14

Une fois les balises structurantes écrites, nous les mettons en page en utilisant la
technologie grid, exactement ce que nous avons appris dans la première partie de
ce livre. Nous ne cherchons pas à mettre en place des détails, nous cherchons
simplement à positionner les différentes zones sur la page web. La zone header, la
zone nav, la zone article et la zone footer, pour cet exemple. C'est également à
cette étape que nous décidons si notre site sera mobile first ou bien destock first.
Nous écrirons le CSS en conséquence. Si nous voulons que notre site soit en
priorité destiné aux écrans de smartphone, alors nous choisirons une mise en page
côté mobile first. Si nous souhaitons que notre site soit en priorité pour les écrans
d'ordinateur alors nous choisirons une mise en page destock first. Ensuite nous
mettrons en place les médias queries pour définir les autres mises en page. Une fois
que toutes les zones ont été positionnées, alors nous allons pouvoir entrer dans le
détail. Pour cela nous irons à l'intérieur de chacune des zones afin de les travailler.
En fait nous irons positionner les contenus au sein de ces zones. En clair, nous
ferons de chaque zone un conteneur et chaque zone deviendra un flexbox.

Faisons un récapitulatif de la façon de procéder :
1. On écrit les balises structurantes.
2. On définit le mobile first ou le destock first.
3. On met en forme les balises structurantes en utilisant le CSS grid.
4. On met en forme chaque zone de balise structurante en utilisant flexbox.

14.2. Le HTML 5
On débute la mise en page de son site internet par l'écriture des balises
structurantes HTML 5. Ici nous allons réaliser une mise en page simple en plaçant
une entête de page (le header), un pied de page (le footer), une zone pour la
navigation ainsi qu'une zone pour l'article. Ecrivons notre fichier HTML
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<header>header</header>
<nav>nav</nav>
<article>article</article>
<footer>footer</footer>

9782340-035294_001_224.indd 2029782340-035294_001_224.indd 202 19/09/2019 13:3919/09/2019 13:39

Utiliser grid & flexbox ensemble 203

</body>
</html>

Ecrivons également une feuille de style juste pour mettre des couleurs de fond aux
différentes zones afin de pouvoir les distinguer au sein d'un navigateur.
header {

background-color: #900;
}
nav {

background-color: #060;
}
article {

background-color: #f60;
}
footer {

background-color: #f0f;
}

Nous venons de définir quatre zones à qui nous avons donné une couleur de fond.
Ces zones ont par défaut un comportement CSS de type bloc. Cela signifie qu'elles
vont occuper toute la largeur qui leur est allouée.
Voici le résultat dans un navigateur

Figure 14-3 : Mise en place des balises structurantes HTML 5

Lorsque l'on crée une page web, très souvent on neutralise les marges par défaut du
navigateur. Pour cela nous donnons la valeur 0 aux propriétés margin et padding
que nous appliquons à l'élément body.
body {

margin: 0;
padding:0;

}
header {

background-color: #900;

9782340-035294_001_224.indd 2039782340-035294_001_224.indd 203 19/09/2019 13:3919/09/2019 13:39

204 Chapitre 14

}
nav {

background-color: #060;
}
article {

background-color: #f60;
}
footer {

background-color: #f0f;
}

Voici le résultat dans un navigateur :

Figure 14-4 : Suppression des marges par défaut du navigateur

A partir de maintenant, nous allons enfermer nos balises structurantes à l'intérieur
d'une boîte div. Ainsi nous pourrons contrôler la largeur que nous souhaitons
donner à notre site. Nous donnerons l'identifiant site à cette boîte div.
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="site">
 <header>header</header>
 <nav>nav</nav>
 <article>article</article>
 <footer>footer</footer>
</div>
</body>
</html>

9782340-035294_001_224.indd 2049782340-035294_001_224.indd 204 19/09/2019 13:3919/09/2019 13:39

Utiliser grid & flexbox ensemble 205

Nous allons donc pouvoir appliquer une largeur à notre site web au travers de son
identifiant. Nous lui donnerons une largeur de 75%. Nous en profiterons également
pour centrer le site au sein de la page.
body {

margin: 0;
padding:0;

}
#site {

width: 75%;
margin: auto;

}
header {

background-color: #900;
}
nav {

background-color: #060;
}
article {

background-color: #f60;
}
footer {

background-color: #f0f;
}

Voici le résultat dans un navigateur

Figure 14-5 : Une boîte div gère la largeur du site

9782340-035294_001_224.indd 2059782340-035294_001_224.indd 205 19/09/2019 13:3919/09/2019 13:39

206 Chapitre 14

14.3. Les principes de base de grid
Précédemment nous avons enfermé nos balises structurantes à l'intérieur d'une
boîte div. Le constat était que les balises structurantes sont par défaut de type bloc.
Elles occupent 100% de la largeur qui leur est allouée.
Ce travail maintenant réalisé, nous pouvons passer à CSS grid. Nous allons aller
dans les grandes lignes de grid. On rappelle que l'on travaille sous le principe de
l'entonnoir. Aucun détail, que du général.
Le travail sera toujours le même. A savoir, nous donnons un display:grid au
conteneur. Puis nous devons définir des colonnes au conteneur. Pour cela nous
utilisons la propriété grid-template-columns. Ensuite, nous devons donner des
noms aux différentes zones définies pour les différents éléments structurants. Pour
cela nous utilisons la propriété grid-area que nous écrivons au sein des propriétés
de chaque élément. Enfin, nous revenons dans les propriétés CSS du conteneur, et
nous écrivons la propriété grid-template-areas afin de positionner les éléments sur
la page web.

Maintenant que nous avons vu les principes de base de grid, revenons sur notre
code précédent. Nous avions enfermé les balises structurantes à l'intérieur de la
boîte qui a pour identifiant site. C'est précisément à cette boîte que nous allons
donner le display:grid. Ensuite nous devons définir le nombre de colonnes que
devra occuper notre site. Pour notre exemple, nous allons définir deux colonnes.
#site {

width: 400px;
margin: auto;
display: grid;
grid-template-columns: 1fr 2fr;

}

Maintenant nous devons définir un nom aux différentes zones structurantes grâce à
la propriété grid-area que nous écrivons dans chacune des propriétés CSS des
éléments structurants. Dans notre exemple, nous avons quatre zones, Le header, la
nav, l'article et le footer.
header {

background-color: #900;
grid-area: header;

}
nav {

background-color: #060;
grid-area: nav;

}

9782340-035294_001_224.indd 2069782340-035294_001_224.indd 206 19/09/2019 13:3919/09/2019 13:39

Utiliser grid & flexbox ensemble 207

article {
background-color: #f60;
grid-area: article;

}
footer {

background-color: #f0f;
grid-area: footer;

}

Il ne nous reste plus qu'à dire comment les éléments doivent être positionnés sur la
page. Pour cela nous retournons dans les propriétés CSS du conteneur pour y écrire
la propriété grid-template-areas.
#site {

width: 75%;
margin: auto;
display: grid;
grid-template-columns: 1fr 2fr;
grid-template-areas:

"header header"
"nav article"
"footer footer";

}

Ici nous venons de placer le header en haut de la page sur les deux colonnes du
site, en dessous nous avons placé la navigation à gauche de l'écran et l'article à
droite de l'écran. Enfin le footer en bas de la page sur les deux colonnes du site.
Nous pouvons également ajouter des gouttières afin d'espacer les différentes zones.
#site {

width: 75%;
margin: auto;
display: grid;
grid-gap: 5px;
grid-template-columns: 1fr 2fr;
grid-template-areas:

"header header"
"nav article"
"footer footer";

}

9782340-035294_001_224.indd 2079782340-035294_001_224.indd 207 19/09/2019 13:3919/09/2019 13:39

208 Chapitre 14

Voici le code CSS complet de notre exemple.
body {

margin: 0;
padding:0;

}
#site {

width: 75%;
margin: auto;
display: grid;
grid-gap: 5px;
grid-template-columns: 1fr 2fr;
grid-template-areas:

"header header"
"nav article"
"footer footer";

}
header {

background-color: #900;
grid-area: header;

}
nav {

background-color: #060;
grid-area: nav;

}
article {

background-color: #f60;
grid-area: article;

}
footer {

background-color: #f0f;
grid-area: footer;

}

9782340-035294_001_224.indd 2089782340-035294_001_224.indd 208 19/09/2019 13:3919/09/2019 13:39

Utiliser grid & flexbox ensemble 209

Voici le résultat dans un navigateur

Figure 14-6 : Notre site sur 2 colonnes

La structure de notre site est maintenant réalisée. C'est vraiment très facile et très
rapide à mettre en place. Il nous faut juste quelques propriétés CSS issues de la
technologie grid.
Si par exemple, nous changeons d'avis et que nous souhaitons que la navigation
soit à droite de l'écran et donc l'article à gauche, alors il nous suffit de les inverser
dans la propriété grid-template-areas. N'oublions pas cependant d'inverser la
largeur des colonnes dans la propriété grid-template-columns.
#site {

width: 75%;
margin: auto;
display: grid;
grid-gap: 5px;
grid-template-columns: 2fr 1fr;
grid-template-areas:

"header header"
"article nav"
"footer footer";

}

Voici le résultat dans un navigateur

Figure 14-7 : Inversion des colonnes

Grâce aux propriétés liées à CSS grid, nous pouvons positionner les différentes
zones où bon nous semble sur la page web, sans pour cela être obligé de modifier
le code HTML.

9782340-035294_001_224.indd 2099782340-035294_001_224.indd 209 19/09/2019 13:3919/09/2019 13:39

210 Chapitre 14

14.4. Le principe des media queries
Afin de mettre en place les media queries dans une feuille de style, nous
employons toujours le même type d'écriture. A savoir, nous définissons les media
queries pour les écrans et nous définissons une largeur d'écran maximum ou une
largeur d'écran minimum.
@media screen and () {
}

Tout ce qui se retrouvera au sein des accolades sera la ou les propriétés CSS liées à
cet écran.
Si par exemple nous travaillons en destock first, nous pouvons définir une largeur
du site de 1000 pixels. Ce sera alors la largeur par défaut. Cette largeur aura alors
été définie dans les propriétés CSS du conteneur grâce à la propriété width.
Ensuite et grâce aux medias queries, nous pouvons alors définir la largeur du site
lorsque l'internaute viendra avec un navigateur inférieur à 1000 pixels. Par exemple
un navigateur d'une largeur maximum de 999 pixels.
@media screen and (max-width: 999px) {
}

Cela signifie que si l'internaute arrive avec un écran supérieur à 999 pixels, il aura
alors accès à notre site qui aura pour largeur par défaut, 1000 pixels. Dans le cas
contraire, si l'internaute arrive avec un écran inférieur ou égal à 999 pixels, alors il
aura accès à notre site qui aura pour largeur celle que nous lui aurons définie à
l'intérieur des accolades des media queries.

On peut ajouter autant de medias queries qu'on le souhaite. Par exemple on peut
définir des propriétés CSS pour notre site si l'internaute arrive avec un écran de
smartphone que l'on pourrait définir à 200 pixels par exemple.
Dans ce cas, nous aurions des media queries pour les écrans inférieurs ou égaux à
200 pixels et des media queries pour les écrans dont la taille est comprise entre 999
et 201 pixels.
PROPRIETES PAR DEFAUT
@media screen and (max-width: 999px) and (min-width: 201px) {
PROPRIETES 1
}

@media screen and (max-width: 200px) {
PROPRIETES 2
}

9782340-035294_001_224.indd 2109782340-035294_001_224.indd 210 19/09/2019 13:3919/09/2019 13:39

Utiliser grid & flexbox ensemble 211

Si l'internaute arrive avec un écran d'au moins 1000 pixels, il aura les propriétés
CSS par défaut, s'il arrive avec un navigateur compris entre 999 pixels et 201
pixels il aura alors les propriétés CSS numéro 1, et enfin s'il arrive avec un écran
inférieur ou égal à 200 pixels il aura alors les propriétés CSS numéro 2.

14.5. Le viewport
Le meta viewport va nous permettre de rectifier les informations qui nous sont
fournies par le constructeur. Par exemple, un constructeur annonce un smartphone
ayant pour largeur 1280 pixels. Cependant les pixels annoncés par le constructeur
ne sont pas les pixels dont nous nous servons en qualité de développeur front end.
Ces 1280 pixels sont surtout liés à la définition de l'affichage du smartphone. En
réalité, les 1280 pixels annoncés seraient peut être pour nous, concepteur de site
internet, 400 pixels. Le meta viewport va nous permettre de pouvoir rectifier cette
différence, nous permettant ainsi d'utiliser la même échelle de pixels que celle
utilisée pour les écrans d'ordinateur. Voici comment doit être déclaré un meta
viewport.
<meta name="viewport" content="width=device-width, initial-scale=1" />

device-width indique au navigateur d'utiliser la vraie taille de l'appareil.
Initial-scale=1 signifie qu'il n'y a aucun zoom. On est alors sur une échelle de 1
pour1.

Nous allons ajouter ce meta à notre fichier HTML
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="site">
 <header>header</header>
 <nav>nav</nav>
 <article>article</article>
 <footer>footer</footer>
</div>

9782340-035294_001_224.indd 2119782340-035294_001_224.indd 211 19/09/2019 13:3919/09/2019 13:39

212 Chapitre 14

</body>
</html>

14.6. Mise en place du responsive
Reprenons notre exemple précédent et ajoutons-lui les medias queries afin de
rendre notre site internet responsive.
Tout d'abord, modifions la largeur par défaut de notre site internet. Passons-la de
75% à 1000 pixels.
#site {

width: 1000px;
margin: auto;
display: grid;
grid-gap: 5px;
grid-template-columns: 2fr 1fr;
grid-template-areas:

"header header"
"article nav"
"footer footer";

}

Nous allons maintenant définir la mise en page de notre site pour les internautes
arrivant avec un écran compris entre 999 pixels et 201 pixels. Nous décidons que
pour ces écrans, la nav se retrouve à gauche de l'écran, à côté de l'article qui sera à
droite de l'écran, et également à côté du footer qui sera aussi à droite de l'écran.
Nous passerons la largeur du site à 90%.
Voici les propriétés CSS pour les écrans compris entre 999 pixels et 201 pixels.
@media screen and (max-width: 999px) and (min-width: 201px) {

#site {
 width: 90%;
 grid-template-columns: 1fr 2fr;
 grid-template-areas:

"header header"
"nav article"
"nav footer";

}
}

9782340-035294_001_224.indd 2129782340-035294_001_224.indd 212 19/09/2019 13:3919/09/2019 13:39

Utiliser grid & flexbox ensemble 213

Voici le résultat dans un navigateur compris en 999 et 201 pixels

Figure 14-8 : Mise en page pour les écrans compris entre 999 et 201px

Occupons-nous à présent des écrans dont la largeur sera inférieure ou égale à 200
pixels. Nous maintiendrons une largeur de 90% pour le site. Nous demanderons
que l'ensemble des éléments soient empilés, donc une seule colonne avec la nav
au-dessus de l'article.
@media screen and (max-width: 200px) {

#site {
 width: 90%;
 grid-template-columns: 1fr;
 grid-template-areas:

 "header"
 "nav"
 "article"
 "footer";

}
}

Voici le résultat dans un navigateur inférieur ou égal à 200 pixels

Figure 14-9 : Mise en page pour les écrans inférieurs ou égal à 200px

9782340-035294_001_224.indd 2139782340-035294_001_224.indd 213 19/09/2019 13:3919/09/2019 13:39

214 Chapitre 14

Voici la feuille de style complète
body {

margin: 0;
padding:0;

}
#site {

width: 1000px;
margin: auto;
display: grid;
grid-gap: 5px;
grid-template-columns: 2fr 1fr;
grid-template-areas:

"header header"
"article nav"
"footer footer";

}
header {

background-color: #900;
grid-area: header;

}
nav {

background-color: #060;
grid-area: nav;

}
article {

background-color: #f60;
grid-area: article;

}
footer {

background-color: #f0f;
grid-area: footer;

}

@media screen and (max-width: 999px) and (min-width: 201px) {
#site {
 width: 90%;

9782340-035294_001_224.indd 2149782340-035294_001_224.indd 214 19/09/2019 13:3919/09/2019 13:39

Utiliser grid & flexbox ensemble 215

 grid-template-columns: 1fr 2fr;
 grid-template-areas:

 "header header"
 "nav article"
 "nav footer";

}
}

@media screen and (max-width: 200px) {
#site {
 width: 90%;
 grid-template-columns: 1fr;
 grid-template-areas:

 "header"
 "nav"
 "article"
 "footer";

}
}

14.7. Les principes de base de flexbox
Il ne nous reste plus à présent qu'une seule étape, celle de la mise en place de
flexbox. Toujours en gardant à l'esprit le principe de l'entonnoir, nous entrons à
présent dans le détail des zones. Si nous prenons par exemple la première zone,
c'est-à-dire le header, il nous suffit alors d'en faire un conteneur en lui donnant un
display:flex. De là nous entrons dans la technologie flexbox. Cela signifie
immédiatement que notre zone possède alors deux axes. Un axe principal, qui par
défaut sera l'axe horizontal et un axe secondaire, qui par défaut sera l'axe vertical.
Le fait de disposer de deux axes va nous permettre de pouvoir positionner les
contenus qui vont se retrouver à l'intérieur de la zone header. Si nous souhaitons
aligner ces contenus le long de leur axe principal, alors nous utiliserons la propriété
justify-content et si nous souhaitons positionner les contenus le long de leur axe
secondaire alors nous utiliserons la propriétés align-item.

Revenons à notre exemple précédent. Nous allons placer au niveau HTML trois
boîtes div au sein du header. Nous donnerons à chacune de ces boîtes la classe
flexbox. Voici à la page suivante notre fichier HTML.

9782340-035294_001_224.indd 2159782340-035294_001_224.indd 215 19/09/2019 13:3919/09/2019 13:39

216 Chapitre 14

<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="site">
 <header>
 <div class="flexbox">Box 1</div>
 <div class="flexbox">Box 2</div>
 <div class="flexbox">Box 3</div>
 </header>
 <nav>nav</nav>
 <article>article</article>
 <footer>footer</footer>
</div>
</body>
</html>

Nous en profitons pour définir une couleur de fond à nos trois nouvelles boîtes et
nous ajoutons ce code à notre fichier CSS
.flexbox {

background-color: #ff0;
}

Voici le résultat dans un navigateur

Figure 14-10 : Résultat sur un écran compris entre 999 pour 201px

9782340-035294_001_224.indd 2169782340-035294_001_224.indd 216 19/09/2019 13:3919/09/2019 13:39

Utiliser grid & flexbox ensemble 217

Nous nous rendons compte immédiatement que nos trois nouvelles boîtes ont un
comportement par défaut de type bloc. Elles sont empilées l'une sur l'autre. Afin de
casser ce comportement, il nous suffit de donner la propriété display:flex à notre
header.
header {

background-color: #900;
grid-area: header;
display: flex;

}

Voici le résultat dans un navigateur

Figure 14-11 : On donne un display:flex au header

De ce fait, le header possède un axe principal ainsi qu'un axe secondaire, facilitant
ainsi sa mise en page. On peut à présent demander à aligner les trois boîtes selon
l'axe principal.
header {

background-color: #900;
grid-area: header;
display: flex;
justify-content: space-around;

}

Voici le résultat dans un navigateur

Figure 14-12 : On aligne les contenus selon l'axe horizontal

Il nous suffit de répéter l'opération au sein de chaque élément, voire même à
l'intérieur des différents media queries.

9782340-035294_001_224.indd 2179782340-035294_001_224.indd 217 19/09/2019 13:3919/09/2019 13:39

218 Chapitre 14

Voici le code CSS de l'exercice complet
body {

margin: 0;
padding:0;

}
#site {

width: 1000px;
margin: auto;
display: grid;
grid-gap: 5px;
grid-template-columns: 2fr 1fr;
grid-template-areas:

"header header"
"article nav"
"footer footer";

}
header {

background-color: #900;
grid-area: header;
display: flex;
justify-content: space-around;

}
.flexbox {

background-color: #ff0;
}
nav {

background-color: #060;
grid-area: nav;

}
article {

background-color: #f60;
grid-area: article;

}
footer {

background-color: #f0f;
grid-area: footer;

9782340-035294_001_224.indd 2189782340-035294_001_224.indd 218 19/09/2019 13:3919/09/2019 13:39

Utiliser grid & flexbox ensemble 219

}

@media screen and (max-width: 999px) and (min-width: 201px) {
#site {
 width: 90%;
 grid-template-columns: 1fr 2fr;
 grid-template-areas:

 "header header"
 "nav article"
 "nav footer";

}
}

@media screen and (max-width: 200px) {
#site {
 width: 90%;
 grid-template-columns: 1fr;
 grid-template-areas:

 "header"
 "nav"

 "article"
 "footer";

}
}

9782340-035294_001_224.indd 2199782340-035294_001_224.indd 219 19/09/2019 13:3919/09/2019 13:39

9782340-035294_001_224.indd 2209782340-035294_001_224.indd 220 19/09/2019 13:3919/09/2019 13:39

Index lexical
A
Align-content.......................81, 170
Align-items..........................89, 153
Align-self.............................98, 161
Axe principal..............................139
Axe secondaire...........................139
F
Flex..189
Flex-basis...................................186
Flex-direction.............................127
Flex-flow....................................137
Flex-grow...................................182
Flex-shrink.................................185
Flex-wrap...................................133
Fractions.......................................32
G
Grid-area......................................64
Grid-auto-columns.......................55
Grid-auto-flow.............................52
Grid-auto-rows.............................56
Grid-column.................................47
Grid-column-end..........................41
Grid-column-gap..........................28
Grid-column-start.........................41

Grid-gap.......................................29
Grid-row.................................49, 56
Grid-row-end...............................42
Grid-row-gap...............................29
Grid-row-start..............................42
Grid-template-areas.....................65
Grid-template-columns................20
Grid-template-rows......................22
J
Justify-content......................77, 141
Justify-items...........................89, 92
Justify-self....................................96
L
Link..58
M
Minmax..68
O
Order....................................70, 177
R
Repeat..35
S
Span...45
V
Viewport.............................110, 211

9782340-035294_001_224.indd 2219782340-035294_001_224.indd 221 19/09/2019 13:3919/09/2019 13:39

	Couverture
	Page de titre
	Copyright
	Avant-propos
	Table des matières
	Partie 1. CSS-Grid
	Chapitre 1
	Présentation de grid
	1.1. Introduction
	1.2. Comment est constituée la grille
	1.3. Le display grid et le display inline-grid
	1.4. Conclusion de ce chapitre

	Chapitre 2
	Le conteneur et ses propriétés
	2.1. Mise en place du conteneur et des contenus
	2.2. Un contenu peut devenir un conteneur
	2.3. Création de colonnes
	2.4. Gestion de la hauteur des lignes
	2.5. Les gouttières
	2.6. Une nouvelle unité de mesure
	2.7. La fonction repeat

	Chapitre 3
	Les contenus et leurs prop
	3.1. Les lignes de grille verticale
	3.2. Les lignes de grille horizontale
	3.3. Le mot-clé span
	3.4. Propriétés raccourcies

	Chapitre 4
	Autres propriétés
	4.1. Changer le sens d'affichage
	4.2. Créer une colonne virtuelle
	4.3. Créer une ligne virtuelle
	4.4. Application aux balises HTML5
	4.5. Définition des zones
	4.6. La fonction minmax
	4.7. La propriété order

	Chapitre 5
	Déplacement des contenus
	5.1. Présentation
	5.2. Alignement de la grille sur l'axe horizontal
	5.3. Alignement de la grille sur l'axe vertical
	5.4. Alignement de tous les contenus
	5.5. Alignement d'un contenu

	Chapitre 6
	Création d'une maquette d'un site responsive
	6.1. Présentation du travail
	6.2. Mise en place des bases du travail
	6.3. CSS côté smartphone
	6.4. CSS côté ordinateur
	6.5. Conclusion

	Partie 2. Flexbox
	Chapitre 7
	Le display flex
	7.1. Mise en place de nos documents de base
	7.2. Déclarer du flex dans notre code CSS
	7.3. Deux possibilités flex ou inline-flex
	7.4. La largeur des contenus
	7.5. Modifions le style par défaut

	Chapitre 8
	La différence entre flex et inline-flex
	8.1. La propriété display
	8.2. Plusieurs conteneurs flex
	8.3. Plusieurs conteneurs inline-flex
	8.4. Conclusion de ce chapitre

	Chapitre 9
	Définir la direction des contenus
	9.1. Une propriété CSS liée à la direction
	9.2. Diriger nos contenus en ligne
	9.3. Diriger nos contenus en colonne
	9.4. Diriger nos contenus en ligne inversée
	9.5. Diriger nos contenus en colonne inversée
	9.6. Conclusion

	Chapitre 10
	Le retour à la ligne
	10.1. Une propriété CSS liée au retour à la ligne
	10.2. Empêcher le retour à la ligne des contenus
	10.3. Autoriser le retour à la ligne des contenus
	10.4. Autoriser le retour à la ligne inversé des contenus
	10.5. Une propriété réunissant deux propriétés
	10.6. Conclusion

	Chapitre 11
	L'axe principal et l'axe secondaire
	11.1. La notion d'axe
	11.2. Alignement sur l'axe principal
	11.3. Alignement horizontal
	11.4. Alignement vertical
	11.5. Récapitulatif de ce que nous savons
	11.6. Alignement sur l'axe secondaire
	11.7. Inversion de l'axe principal
	11.8. Alignement d'un contenu particulier
	11.9. Alignement de plusieurs lignes ou colonnes
	11.10. Conclusion

	Chapitre 12
	Manipulation des contenus
	12.1. Gérer les ordres d'affichage
	12.2. Augmenter la largeur d'un contenu
	12.3. Diminuer ou définir la largeur d'un contenu
	12.4. La super propriété flex
	12.5. Conclusion

	Chapitre 13
	Création d'une maquette
	13.1. Présentation du travail
	13.2. Première partie
	13.3. Deuxième partie
	13.4. Conclusion

	Partie 3. Grid & flexbox ensemble
	Chapitre 14
	Utiliser grid & flexbox ensemble
	14.1. Le principe de base
	14.2. Le HTML 5
	14.3. Les principes de base de grid
	14.4. Le principe des media queries
	14.5. Le viewport
	14.6. Mise en place du responsive
	14.7. Les principes de base de flexbox

	Index lexical

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

