Carl Brison

J'apprends facilement

le CSS avec
GRID & FLEXBOX







Références sciences

J'apprends facilement
le CSS avec GRID
& FLEXBOX



Collection Références sciences

dirigée par Paul de Laboulaye
paul.delaboulaye@editions-ellipses.fr

Retrouvez tous les livres de la collection et des extraits sur www.editions-ellipses.fr

ISBN 9782340-035294

; DANGER
©Ellipses Edition Marketing S.A., 2019 PHOTOCOPLLIGE
32, rue Bargue 75740 Paris cedex 15 TUE LELVRE

Le Code de la propriété intellectuelle n’autorisant, aux termes de Iarticle L. 122-5.2° et
3°a), d’une part, que les « copies ou reproductions strictement réservées a ’usage privé
du copiste et non destinées a une utilisation collective », et d’autre part, que les analyses
et les courtes citations dans un but d’exemple et d’illustration, « toute représentation ou
reproduction intégrale ou partielle faite sans le consentement de 1’auteur ou de ses ayants
droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit constituerait une
contrefagon sanctionnée par les articles L.335-2 et suivants du Code de la propriété
intellectuelle.

www.editions-ellipses.fr



Avant-propos

Jamais le CSS n'aura été€ aussi facile pour positionner des éléments !

Je réalise des sites internet depuis le début des années 2000 et a cette époque nous
nous servions des tableaux HTML pour gérer la mise en page de nos sites.

Puis de nouveaux supports pour visionner les sites internet sont arrivés sur le
marché, tels que les smartphones ou les tablettes. Il a alors fallu penser a un
nouveau mode de mise en page afin que les sites internet puissent s'adapter aux
nouveaux supports qui les visionnaient. De 1a, la mise en page par tableaux a été
abandonnée au profit d'une mise en page a l'aide du langage CSS.

Cependant, des propriétés CSS telles que FLOAT n'étaient pas adaptées a la mise
en page d'un site internet. Et parfois il pouvait méme étre extrémement laborieux
de mettre en page un site internet a l'aide des propriétés classiques du CSS.

C'est d'ailleurs pour cela que des frameworks tels que bootstrap ont vu le jour, pour
aider les concepteurs de sites internet a réaliser des mises en pages plus facilement.
Oui mais voila, bootstrap n'est pas une technique officielle et le CCS ne peut pas se
faire voler la vedette par un framework, d'ot la naissance des technologies grid et
flexbox !

Il s'agit de techniques tres simples du CSS pour positionner tous les éléments d'un
site internet, exactement comme on le souhaite.

Dans ce livre nous allons apprendre toutes les propriétés lies a grid et a flexbox
ainsi que toutes leurs valeurs.

Nous étudierons ces technologies séparément puis nous verrons comment les
utiliser ensemble pour mettre en page un site web.

A la fin de la lecture de ce livre, vous serez largement opérationnel pour réaliser la
mise en page de n'importe quel site internet.

Je vous souhaite une bonne lecture,

Carl Brison.






Table des matieres

::: Partie 1
CSS GRID

CRhapitre La..ceiciiiiiiniiinnininnnsninssncsssnsssnesssnsssnsssssssssssssssssssssssssssssssssssssssans 11
Présentation de grid..........cccoccuveieieoiiiiieeieee ettt 11
L1 INtrOdUCHION. .ttt 11

1.2. Comment est constituée la grille.........cocceeevviiiniiiiniiiiiiieeneennn. 11

1.3. Le display grid et le display inline-grid..............cccccouveeeeuvnnnnnnn.. 14

1.4. Conclusion de ce chapitre..........cceeevieeniiiiiniieiniiieeeee e, 15
CRAPILTE 2..ucccecreicnineicnsnncssnncsssnscsssnsosssssossasssssasssssasssssasssssasesssasesssssanssssssssss 17
Le conteneur et S€S PrOPIICLES. .....cuuieriieeiiieeriieerieeerreeerreeereeesreeeeeeeenns 17
2.1. Mise en place du conteneur et des contenus...............oeevuvvveeeen. 17

2.2. Un contenu peut devenir Un CONLENCUT .......cccveeerveerrereeriveeenveeenn 18

2.3. Création de COIONNES ........cccveeruiieriiieiriiieniteeriee e 20

2.4. Gestion de la hauteur des lignes.........ccceeeeveercieeencieeeniiee e 22

2.5. LeS GOULLICTES ...eeeruviieriiieeriiieeeiiieeeieeesitee et e eiteeeite e e e e e e eiiieeeeeeeas 28

2.6. Une nouvelle unit€ de meSure.........ccceeeevveereieeeriieeeniveeeeseeeveeeeenn. 30

2.77. L2 fONCUON 7EPEAL .......cccuveeeeeeiiee et e e 35
CRAPILTE 3...cccoveicnrneicnsnncssnncssanncsssnsesssssossasssssasssssasssssasssssasesssssssssssanssssssssss 39
Les contenus et 1eurs propriétés. ........coceeruerreenieineenieeieenieeieeeeieeee s 39
3.1. Les lignes de grille verticales.........ccoccueevviieeniiiiiniiieniieciiieeee, 39

3.2. Les lignes de grille horizontales............ccceevvveeeiieencieeniiieeeiieeee. 42
3.3.Le MOt-ClE SPAM.......uuviieeiiiiieeiieeeeceee et 45

3.4, Propri€tés raCCOUICICS.....uuiirurrerrreerreeerieeenieeeirreeeeeseesennnnnneeeeas 47
CRhaPItre d....eeecceiciiiinniiiniisnicsninssnissnsssncssissssssssssssnessssssssessssssssessssssssssssns 51
AULIES PTOPTIELES.....eeiuiiieiiieeiiieerite ettt ettt e s sireeeeeeeeenas 51
4.1. Changer le sens d'affichage.........cccceeevvieeiiieniiiieieeceee e, 51

4.2. Créer une colonne virtuelle...........coceeeviiiiniiinniiienniiiieeeeeees 53

4.3. Créer une ligne virtuelle...........ccoeevveeiniieeenieeeieeeieeeee e, 56

4.4. Application aux balises HTMLS........ccccccooviiiiiiiiniiiieeeeeiees 57

4.5. DEfinition des ZONES. ....cc.eeeuuieriienieiniieeieeiee ettt e e 62

4.6. La fONCHON MIAMIAX .....ccc.eeeceeeiiiniiiiieieeiieeeeeeee e 68

4.7. L2 PIOPIIELE OFACT ......veeeeeveeeveeeieeeeeeete et 70



6 Table des matiéres

CRAPILLE S.ucceeeiiiiiiiiiiniisnniininsninssnisnnsssncsssisssnsssssssssesssssssssssssssssesssssssssssens 75
Déplacement des CONLENUS.........c.eeeeruieeriieiniieiiieeiee et esieeeeee e e 75
5.1, Présentation..........cooueiiuieiiiiiieiieeieeeeeee e 75

5.2. Alignement de la grille sur l'axe horizontal.............ccccccoceenennnn 77

5.3. Alignement de la grille sur I'axe vertical..........ccccocevvervveennnnnnenn.. 81

5.4. Alignement de tous les CONtenuUS...........ccceevueeerieerniieererniiiieeeeen. 87

5.5. Alignement d'Un CONEENU........cccueiriiriiienieeiienie e ee e 96
CRAPILTE O....ueeeenrecnniinniinniininsnnessnnnssncsssiessnesssesssnessssssssesssssssssssssesssssssssecs 101
Création d'une maquette d'un Sit€ reSPONSIVE......ccccveeerveeeerriuiriiieeeeeenns 101
6.1. Présentation du travail..........ccccceevueinieniieiiiiniiniceceeeeee e 101

6.2. Mise en place des bases du travail..........ccoeceeeviiiiiiiiieniinnninns 101

6.3. CSS cOté smartphone..........ccceeeevveeriuieeniieenieeeeciirieeeeeeeeeeeeeens 105

6.4. CSS COtE OrdINALEUT....ccuveeiiiiiiinieeiieeieeee ettt 108

6.5. CONCIUSION. ...coiiiiiiiiiiiie ettt 110

::: Partie 2

FLEXBOX

CRAPILTE 7uveeerrercrsnicsssnncssssscsssssessassossasssssasssssasssssasssssasssssasssssssssssanssssssssss 115
L& diSPIAY flEX...uiiiiiiiiiie ettt e e 115
7.1. Mise en place de nos documents de base........cc.ccceeeervvinnineennn. 115

7.2. Déclarer du flex dans notre code CSS .......ccoovevivieeiiiiiciiiieenn. 117

7.3. Deux possibilités flex ou inline-flex .........ccccoveveeeeeeiinnicunnnennnn. 118
7.4.La largeur des CONLENUS ......c.eeevveeereeenireenireerreeerreeeenreeeeeeeeens 118

7.5. Modifions le style par défaut..........ccocceerviiiniiiiniiiiniiciieeeee, 119
CRAPILTE 8...cocovveienreicssencssniessanicsssnscssassossasssssasssssasssssasssssasssssssesssssssnsanasss 121
La différence entre flex et inline-flex..........cccueveevcveenceeeieeeeeneecreeeennn. 121
8.1. La propri€té display...........cccoueevvueieviiiieiiiiiieeeieeeieeeee e 121

8.2. Plusieurs conteneurs fleX.........ccceevueeerieeriieeniieeenieeeeesivveeeens 122

8.3. Plusieurs conteneurs inline-flex...........cccoveeeeevuveeeecvveeeescveeeaennn. 124

8.4. Conclusion de ce Chapitre.........ccceeeuveeeiiieeeiiieeniieeeeeeeeeeveeeeennn 125



Table des matiéres 7

CRAPILIE O..ceeeeiiiniiiiiiiniictinsnisnecsnnicsicssnesssesssnssssssssesssssssssssssassssssssnses 127
Définir la direction des CONENUS.........c.eeervieeriiierniiieenieeeeee e 127
9.1. Une propriété CSS liée a la direction.........ccccceveerieeeneeeiniineenn. 127

9.2. Diriger nos contenus €n ligne...........ccoevveeriveeniieenieeeniieeeninnns 127

9.3. Diriger nos contenus €n COlONNE..........cocceereeerieenieniieeeenniieeenn. 129

9.4. Diriger nos contenus en ligne inversée.........ccooeuvvveeeeeeerrrnnnnnnns 130

9.5. Diriger nos contenus en colonne inversée.........c.cceeeueeveeneeeeenn. 131

0.6. CONCIUSION. ...ccuvtiiiiiiiiiieetteee ettt 132
Chapitre 10.....ueicineicnneicnssnncsssnncsssnscssasssssasssssasssssasssssasesssasssssnsesssssssssasasss 133
Le retour 2 1a HIgNe.....cueeieviieeiieeiie e 133
10.1. Une propriété CSS liée au retour a la ligne...........cceeeeeeeennnnnns 133

10.2. Empécher le retour a la ligne des contenus..........ccccveeeeeennnnns 133

10.3. Autoriser le retour a la ligne des contenus.............cceeeeerennunnnne 135

10.4. Autoriser le retour a la ligne inversé des contenus................... 136

10.5. Une propriété réunissant deux propri€tés..........ccooeervveernnnnnns 137

10.6. CONCIUSION.......tiiiiiiiiieiieeieeeeee ettt 137
Chapitre T.....ceiciiiiiinsinininssicsnesssnsssnssssssssnssssessssssssssssssssssssssssssssssses 139
L'axe principal et 1'axe secondaire...........cceccueerviieeniieeenieeeeriiiiiiceeeeennn 139
11.1. La NOtION d'8XE.....eeriieiiiniieiiieeiie ettt 139

11.2. Alignement sur I'axe principal........cccccccevveeeriiiinieeinieernnnnians 140

11.3. Alignement horizontal............ccceeeieeerieeerieeeieeeieee e 141

11.4. Alignement Vertical..........coooveeviuieiriiieiniiieinieeeriieeeeee e 143

11.5. Récapitulatif de ce que NOUS SAVONS.......ccccveerrureeerieeenieeennnnenns 150

11.6. Alignement sur I'axe SecONdaire............cceeervuveeriiieeniueeeeeenninnns 151

11.7. Inversion de 1'axe principal..........ccceeevueeerciieeiieeeiieenee e 156

11.8. Alignement d'un contenu particulier...........cccceevveeveenierneennnee. 160

11.9. Alignement de plusieurs lignes ou colonnes.............ccccccuueeee.. 167
11.10. CONCIUSION. ...cutiiiiiiiiiiierieee et 175
CRApPItre 12.....uueicecseicnsencsssnncsssnscssssscssassossassossasssssasssssasesssasssssnsssssssssssanssss 177
Manipulation des CONENUS..........cueerrireeriieeerieeerieeerieeeeeeeeeeeesneeesneees 177
12.1. Gérer les ordres d'affichage.........ccccceevvieiniiiiiiiiiniiiiices 177

12.2. Augmenter la largeur d'un contenu............ceecveeecveeenieeenneennns 181

12.3. Diminuer ou définir la largeur d'un contenu..............cccceeennneee 185

12.4. La super propriété flex .........ccceeveemenrieiiienieeieenieeieenieeeenn 189

12.5. CONCIUSION.....coiiiiiiiieeeeeeeeeeeeeeeee ettt e e e e etes e eeseeesannes 190



8 Table des matiéres

Chapitre 13.....iiniiiieiiiicninininsnncssnisssncssnesssnsssssssssssssesssssssssssssessssssssses 191
Création d'une MAQUELLE........ccevureiriieiriieeniieeieeereee e e esieee e 191
13.1. Présentation du travail.........c.ccoooeeiiiiiiiniiniiiieceeeeen 191

13.2. Premiere PArtiC.......covveerrureeriuieeniieenieeenieeessieeesieeeeeeeeessessnnnnns 192

13.3. DEUXICME PATTIC....eetieurieiieiieeieeite ettt iee e e ee e 193

13.4. CONCIUSION......eiiiiiiiiiieiiiie ettt 198

::: Partie 3
GRID & FLEXBOX ENSEMBLE

Chapitre 14.....ueiiviiiiiiiincsinsnnsssncssncsssncssnssssesssssssssssssesssssssssssssessssssssses 201
Utiliser grid & flexbox ensemble.............coeeecvieieeiiiiieiiiciiieeeeeeeeeeeeeee, 201
14.1. Le principe de Dase.......cccueeevivieeiiieeiiieeeiieeeieeeeeeereeeiee e 201
14.2.Le HTML 5.ttt 202

14.3. Les principes de base de grid...........cecvuveveuveenieeinieeeeeeeeeenns 206

14.4. Le principe des media GUETIEsS.............ccccueeeecueevieeeniieeeieeennnns 210

T4.5. L€ VIEWPOT T.eeeeeeieeieiiee et eetee e etee e e ettee s 211

14.6. Mise en place du reSPONSIVE. .....cccveerrureeriiieeniiieeniieenieeenieeeans 212

14.7. Les principes de base de flexbox........c.cccvuveecuveeecuveeeeeeeeennenns 215

INAEX LEXICAL..uuuueeeeeeeeeeeeeeeeeeeeeeeeeesesssssssssessssssssssssssssssssssssssssssssssssssssnsssassson 221




Partie 1

CSS-GRID






Chapitre 1

Présentation de grid

1.1. Introduction

Tout d'abord, pour accéder a la technologie grid, nous devons utiliser la propriété
CSS display a qui nous donnons la valeur grid. Ceci aura pour conséquence de
créer une grille virtuelle afin de nous faciliter la mise en page des élements HTML.
Voici le code CSS :

\display: grid;

1.2. Comment est constituée la grille

La grille est constituée de lignes et de colonnes, elles-mémes séparées par des
lignes de grille. Voici a quoi ressemble la grille :

Ligne de grille

Figure I1-1 : Grille CSS

La grille est constituée de plusieurs lignes et de plusieurs colonnes. Il peut y avoir
autant de lignes et de colonnes que l'on souhaite

La grille est également constituée de lignes de grille. Les lignes de grille sont les
lignes qui vont séparer les différentes lignes et colonnes qui constituent la grille. La
ligne de grille est également présente tout autour de la grille.

En étudiant la figure ci-dessus (figure I-1), nous pouvons nous apercevoir que
celle-ci est constituée de 3 lignes.



12 Chapitre 1

Voici les 3 lignes de notre grille :

Li

.

Figure 1-2 : Les lignes

De méme qu'en étudiant la figure 1-1, nous pouvons nous apercevoir que celle-ci-
est constituée de 3 colonnes.

<5 <5 5]

Figure 1-3 : Les colonnes

Quant aux lignes de grille, nous avons sur la figure 1-1, 4 lignes de grille
horizontale et 4 lignes de grille verticale.



Présentation de grid

Voici les 4 lignes de grille horizontale :

Ligne de grille 1

igne de grille 2

Ligne de irille 3

Ligne de grille 4

.I_.

Figure 1-4 : Lignes de grille horizontale

Voici les 4 lignes de grille verticale :

Ligne de grille 4

Li

gne de irllle 3

Li

gne de irllle 2

Li

gne de irille 1

Figure 1-5 : Lignes de grille verticale



14 Chapitre 1

1.3. Le display grid et le display inline-grid

Comme nous 1'avons vu au début de ce chapitre, pour accéder a la technologie grid
nous devons nous servir de la propriété CSS display.

Nous allons créer deux boites div dans un fichier HTML a qui nous allons donner
un identifiant. Nous écrirons le mot Grille 1 dans la premicre boite et le mot Grille
2 dans la seconde boite.

<div id="grille1">Grille 1</div>

<div id="grille2">Grille 2</div>

Nous allons ensuite donner une couleur de fond a ces boites div dans un fichier
CSS externe.
#grille1 {

background-color: #f00;

¥
#grille2 {
background-color: #00f;

}

Voici le résultat que nous allons obtenir dans un navigateur :

Grille 2

Figure 1-6 : Mise en place de 2 boites div

Sans surprise, nous constatons que les deux boites div sont empilées I'une sur
l'autre car par défaut elles ont un comportement de type bloc.

Nous allons maintenant ajouter la propriété display a nos deux identifiants a qui
nous donnerons la valeur grid.

#grille1 {
background-color: #f00;
display: grid;

}

#grille2 {
background-color: #00f;
display: grid;

}




Présentation de grid 15

Voyons a présent ce que cela va nous donner comme résultat dans un navigateur :

Grilet
Grille 2

Figure 1-7 : Résultat du display grid

Le constat que nous faisons ici est que le fait d'avoir défini un display: grid aux
deux boites div n'a absolument pas modifié le résultat dans un navigateur.

Nous pouvons donc conclure que le fait de définir un display: grid a une boite div
donne a cette boite div un comportement de type bloc. Il n'est donc pas possible de
positionner ces deux boites div I'une a coté de l'autre.

Comment faire pour modifier cet état si malgré tout on souhaite positionner ces
deux boites div 1'une a c6té de l'autre ? Il suffit tout simplement de modifier la
valeur du display en la passant de grid a inline-grid.

Vérifions cela en modifiant notre code CSS :

#grille1 {
background-color: #f00;
display: inline-grid;

}

#grille2 {
background-color: #00f;
display: inline-grid;

}

Voici le résultat obtenu dans un navigateur

Grille 1 Grille 2

Figure 1-8 : Résultat du display inline-grid

Nos deux boites div viennent de perdre leur comportement de type bloc pour
adopter celui du type inline. Elles ont pour largeur ce qu'elles contiennent.

1.4. Conclusion de ce chapitre

Pour accéder aux grilles, nous devons utiliser la propriété CSS display. Si nous
souhaitons que la boite qui va contenir cette propriété CSS soit de type bloc, alors
nous donnerons la valeur grid. Si nous souhaitons que la boite qui va contenir cette
propriété CSS soit de type inline, alors nous donnerons la valeur inline-grid.

Ce qu'il faut également retenir est que la boite qui va contenir le display: grid
deviendra alors un conteneur. C'est-a-dire qu'elle contiendra une grille.






Chapitre 2

Le conteneur et ses propriétés

2.1. Mise en place du conteneur et des contenus

Il est trés important de bien comprendre ce qu'est un conteneur et ce que sont les
contenus. Le conteneur est une boite qui va contenir d'autres boites, c'est-a-dire des
contenus. C'est au conteneur que 'on donne la propriété display: grid.

Prenons tout de suite un exemple en créant des boites div dans un document
HTML. Nous donnerons un identifiant a la boite qui sera le conteneur et nous
donnerons une classe aux boites qui seront les contenus.

<div id="grille">
<div class="un">un</div>
<div class="deux">deux</div>
<div class="trois">trois</div>
<div class="quatre">quatre</div>
<div class="cinq">cing</div>
<div class="six">six</div>

</div>

Ici le conteneur a pour identifiant le mot grille et les contenus ont pour classe les
mots un, deux, trois jusqu'a six.

Le conteneur renferme les six boites div. C'est a lui que nous allons donner la
technologie grid au travers d'une feuille de style. Quant aux contenus, nous leur
donnerons a chacun une couleur différente.

#grille {
display: grid;
}
.un{
background-color: #fcf;
}
.deux {
background-color: #f9f;
}
trois {

background-color: #f6f;




18 Chapitre 2

.quatre {

background-color: #fc9;
}
.cing {

background-color: #fc6;
}
.Six {

background-color: #f96;

Voici le résultat que nous obtenons dans un navigateur :

%E‘Elmunme ><‘+ v

Figure 2-1 : Conteneur et contenus

Nous pouvons observer que le conteneur ainsi que les contenus ont par défaut un
comportement de type bloc et ce malgré le fait que 1'on a donné la propriété display
au conteneur.

Par conséquent, le fait de donner la propriété display: grid 2 un conteneur ne
modifie en rien le comportement par défaut des boites div. En revanche, cela nous
permet d'entrer dans la technologie grid et d'accéder ainsi a des nouvelles
propriétés CSS qui vont nous permettre de créer une grille virtuelle et de
positionner les contenus selon cette grille.

2.2. Un contenu peut devenir un conteneur

Dans la seconde partie de ce livre, nous étudierons la technologie flexbox. 11 s'agit
la-aussi d'une technologie CSS de positionnement d'éléments. Cependant la
technologie flexbox et la technologie grid ne sont pas concurrentes mais
complémentaires.

Bien que nous n'ayons pas encore étudié la technologie flexbox, nous allons faire
une petite parenthése en nous servant de flexbox pour transformer les contenus en
conteneurs.



Le conteneur et ses propriétés 19

Pour cela, nous allons donner une classe supplémentaire a nos contenus et nous
appellerons cette nouvelle classe flexbox.

<div id="grille">
<div class="un flexbox">un</div>
<div class="deux flexbox">deux</div>
<div class="trois flexbox">trois</div>
<div class="quatre flexbox">quatre</div>
<div class="cing flexbox">cing</div>
<div class="six flexbox">six</div>

</div>

Dans notre feuille de style, nous allons ajouter cette nouvelle classe et lui donner la
propriété display, mais cette fois ce ne sera pas la valeur grid mais la valeur flex.
Sans entrer dans le détail de la technologie flexbox que nous étudierons dans la
deuxieéme partie de ce livre, le fait de donner la propriété display: flex a la classe
Sflexbox fait que tous les éléments HTML qui possedent cette classe deviendront
des conteneurs.

A cette classe flexbox, nous allons ordonner que les éléments HTML soient
centrés, qu'ils aient une taille de 30 pixels, qu'ils soient écrits en gras, qu'ils aient
un padding de 20 pixels et que la boite div qui possede cette classe ait une bordure
solide de 1 pixel.

flexbox {
display: flex;
justify-content: center;
padding: 20pXx;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

Nous reviendrons trés largement sur la technologie flexbox a la deuxieme partie de
ce livre. Comprenez simplement ici que la propriété justify-content va nous
permettre de centrer un texte sur la largeur du nouveau conteneur.



20 Chapitre 2

Voici le résultat que nous obtenons dans un navigateur :
B 8| 5 monste x|+ v =

<« > 0 @& |0 Ll = 2 =

quatre

cinq

Figure 2-2 : Les contenus deviennent des conteneurs

De ce fait, nous nous retrouvons avec un conteneur qui posséde six contenus qui
sont eux-mémes des conteneurs.

2.3. Création de colonnes

Revenons a notre boite div a qui nous avons donné pour identifiant le nom grille.
Au niveau CSS, nous en avons fait un conteneur puisque nous lui avons donné la
propriété display a qui nous avons donné la valeur grid.

De ce fait, nous pouvons maintenant accéder a la technologie grid pour ce
conteneur. Donc nous allons pouvoir mettre en place une grille CSS.

Une grille est naturellement constituée de deux choses : des lignes et des colonnes.
Ici nous allons voir comment créer des colonnes grace a une nouvelle propriété
CSS. Cette nouvelle propriété se nomme grid-template-columns. Elle attend des
valeurs pour chaque colonne créée. Par exemple si on veut créer deux colonnes, on
écrira deux valeurs. Chaque valeur correspondra a la largeur de la colonne ainsi
créée.

Si on souhaite créer deux colonnes de 200 pixels chacune, nous allons alors ajouter
cette nouvelle propriété a l'identifiant grille en lui donnant pour valeur 200px et
200px.

#grille {
display: grid;
grid-template-columns: 200px 200pXx;

Ceci aura pour conséquence de détruire le comportement de type bloc des
contenus.



Le conteneur et ses propriétés 21

Voyons le résultat obtenu dans un navigateur :

= = © w [l ¥ E= LB

un

Figure 2-3 : Mise en place des colonnes

cinq

Ici on se retrouve avec deux colonnes de 200 pixels chacune. Cela signifie que
notre conteneur grille posseéde une premiere colonne de 200 pixels de large et une
deuxieme colonne de 200 pixels de large.

Nous aurions pu utiliser le pourcentage comme unité de mesure. Par exemple, au
lieu de donner 200 pixels de large a nos deux colonnes, nous aurions pu leur
donner pour valeur 50%. Elles auraient alors occupé chacune 50% de la largeur du
conteneur.

Voici le code CSS :

#grille {
display: grid;
grid-template-columns: 50% 50%;

Le résultat obtenu dans un navigateur sera celui-ci :

B & 5 vonsie < | S

= = O @ Kl * [N e

Figure 2-4 : colonnes gérées en pourcentage

Il est tout a fait possible de mélanger les unités de mesure. Par exemple, on peut
donner une valeur de 200 pixels pour la premicre colonne et une valeur de 50%
pour la seconde colonne. Comme ceci

#grille {
display: grid;
grid-template-columns: 200px 50%;




22 Chapitre 2

Voici le résultat de ce code dans un navigateur :

B G| monsie x P

< 5> 0O & |o x| = L e -
un deux
cinq six

Figure 2-5 : Plusieurs unités de valeur

Si nous voulions obtenir trois colonnes, vous avez compris qu'il nous suffit
d'inscrire trois valeurs a la propriété grid-template-columns. Comme ceci :

#grille {
display: grid;
grid-template-columns: 200px 300px 200px;
}
Voici le résultat obtenu dans un navigateur :
a‘ElMo..m X‘+v = ER
€ 0 e o b = L @ =
un deux
quatre cinq six

Figure 2-6 : Création de trois colonnes

Ici la premiere colonne fait 200 pixels de large, la seconde 300 pixels de large et
enfin la troisieme 200 pixels de large.

Pour conclure sur la création de colonnes, a chaque fois que nous voulons créer une
nouvelle colonne, il suffit tout simplement de donner sa largeur en pixel ou en
pourcentage, dans la propriété grid-template-columns.

Nous verrons un peu plus loin dans ce livre, qu'il existe une nouvelle unité de
mesure qui a été créée spécialement pour les grilles CSS.

2.4. Gestion de la hauteur des lignes

Contrairement aux colonnes dont on défini le nombre, les lignes sont gérées tout
autrement. En fait, le nombre de lignes est en relation direct avec le nombre de
colonnes, suivant la quantité de contenus.

Bien que nous ne puissions pas définir le nombre de lignes, nous pouvons
cependant intervenir sur la hauteur de ces lignes. Pour cela, le CSS met a notre
disposition la propriété grid-template-rows.



Le conteneur et ses propriétés

Nous conservons le méme code HTML :

23

<div id="grille">
<div class="un flexbox">un</div>
<div class="deux flexbox">deux</div>
<div class="trois flexbox">trois</div>
<div class="quatre flexbox">quatre</div>
<div class="cing flexbox">cing</div>
<div class="six flexbox">six</div>

</div>

Concernant le code CSS, nous demandons a obtenir deux colonnes :

#grille {
display: grid;
grid-template-columns: 200px 300px;
}
.un{
background-color: #fcf;
}
.deux {
background-color: #9f;
}
rois {
background-color: #f6f;
}
.quatre {
background-color: #fc9;
}
.cing {
background-color: #fc6;
}
.Six {
background-color: #f96;
}
flexbox {
display: flex;
justify-content: center;
padding: 20px;




24 Chapitre 2

font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

La conséquence de ce code est que 1'on obtient 3 lignes car le nombre de lignes est
la conséquence du nombre de colonnes par rapport au nombre de contenus.

= = © @ [N

Figure 2-7 : Obtention de 2 colonnes et 3 lignes

X

cinq

Afin de pouvoir intervenir sur la hauteur des lignes, il nous suffit d'ajouter notre
nouvelle propriété CSS grid-template-rows a notre conteneur nommé grille, et de
lui donner une hauteur pour chacune des lignes.

Par exemple, nous pouvons donner une hauteur de 200 pixels a la premiere ligne

#grille {
display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 200px;

}

Voici le résultat obtenu dans un navigateur :

= = © & [N

Figure 2-8 : Modification de la hauteur de la premiére ligne

cinq

La premiere ligne fait 200 pixels de haut et uniquement la premiere ligne. Les
autres lignes n'ont pas été modifiées.

Si on souhaite modifier la hauteur de la seconde ligne, on rajoute une nouvelle
valeur apres la premiere.



Le conteneur et ses propriétés 25

Ici nous donnons une hauteur de 200 pixels a la premiere ligne et une hauteur de
100 pixels a la seconde ligne.

#grille {
display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 200px 100px;

Voici le résultat de ce nouveau code :
‘E‘EIMunslie ><‘+ v

= = © @& [N

i s _

Figure 2-9 : 200px pour la 1ére ligne et 100px pour la 2eme

Ici nous avons géré les hauteurs de lignes en pixel, il est également possible de les
gérer en pourcentage. Cependant attention, pour pouvoir gérer des hauteurs de
lignes en pourcentage, il nous faut donner une hauteur au conteneur.

Voyons tout de suite un exemple pour bien comprendre. Nous allons définir une
hauteur de 50% pour la premicre ligne. Nous laissons la hauteur de 100 pixels pour
la seconde ligne.

#grille {
display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 50% 100px;

Voici le résultat de ce code CSS :
t»ﬁ‘ElMunslie x‘+ =z

= = © & [N

Figure 2-10 : Gestion de la 1ére ligne de pourcentage

un

cinq

Nous pouvons voir que le fait d'avoir passé la hauteur de la premiere ligne en
pourcentage n'a eu aucun effet. Pour que la hauteur en pourcentage puisse
fonctionner, nous devons donner une hauteur au conteneur.



26 Chapitre 2

Ici nous allons donner une hauteur de 600 pixels a notre conteneur :
#grille {
display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 50% 100px;
height: 600px;

}

Voici le résultat obtenu dans un navigateur :

& S| 5 vonsie x|+ v

= = © o [N

Figure 2-11 : Hauteur donnée au conteneur

Voici l'explication de ce résultat. Le conteneur posseéde une hauteur de 600 pixels,
la premiere ligne occupe 50% de la hauteur du conteneur, c'est-a-dire 300 pixels.
La deuxieme ligne occupe 100 pixels de haut. Il reste donc 200 pixels a combler
pour atteindre les 600 pixels de haut du conteneur, c'est précisément la hauteur de
la troisieéme ligne.

Si nous ne souhaitons pas que la troisieme ligne occupe la totalité de la hauteur
restante, il nous suffit alors de lui donner une valeur.

#grille {
display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 50% 100px 150px;
height: 600px;

}

Nous avons vu qu'en donnant une hauteur au conteneur et en ne donnant aucune
hauteur a la troisieme ligne, celle-ci occupait alors la hauteur restante. Comment



Le conteneur et ses propriétés 27

faire pour que ce soit la deuxieme ligne qui occupe la hauteur restante et non la
troisieme ? 1l suffit tout simplement de donner la valeur auto a la deuxieme ligne.

#grille {
display: grid;
grid-template-columns: 200px 300px;
grid-template-rows: 50% auto 100px;
height: 600px;

}

Voici le résultat obtenu dans un navigateur :
t»ﬁ‘ElMunsue ><‘+ v

= = © @& [N

un

Figure 2-12 : Passage en auto de la 2éme ligne

Voici l'explication de ce résultat. Le conteneur posséde une hauteur de 600 pixels,
la premiere ligne occupe 50% de la hauteur du conteneur, c'est-a-dire 300 pixels.
La troisieme ligne occupe 100 pixels de haut. Il reste donc 200 pixels a combler
pour atteindre les 600 pixels de haut du conteneur, c'est précisément la hauteur de
la deuxiéme ligne gréace a la valeur auto.

Il est également possible d'utiliser la valeur auto pour gérer la largeur des colonnes.
Par exemple, si nous voulons définir une premiére colonne de 200 pixels, une
troisieme colonne de 300 pixels et que la seconde colonne remplisse toute la
largeur restante, il suffit de passer cette deuxieme colonne en valeur auto.
#grille {
display: grid;
grid-template-columns: 200px auto 300px;




28 Chapitre 2

Voici le résultat obtenu dans un navigateur :

@‘EI Mon site ><|+ v S
€ 5 0 & |0
un deux
quatre cinq

Figure 2-13 : Deuxieme colonne en auto

Nous constatons que la deuxieme colonne remplit tout I'espace restant du fait
qu'elle a pour valeur auto.

2.5. Les gouttiéres

Jusqu'a présent nous avons appris a mettre en place des colonnes, a gérer leur
largeur et a gérer la hauteur des lignes. Nous allons maintenant voir comment
espacer les différentes lignes et les différentes colonnes, car pour le moment elles
sont collées les unes aux l'autres. En clair, nous allons apprendre & mettre en place
des gouttieres afin d'espacer les différentes boites.

CSS met a notre disposition une propriété qui va nous permettre de pouvoir
installer un espace, une gouttiere entre les différentes colonnes. Cette propriété se
nomme grid-column-gap. Elle sera a placer dans les propriétés CSS du conteneur.
Pour notre exemple, nous allons définir une goutticre entre les colonnes de 10
pixels.

#grille {
display: grid;
grid-template-columns: 200px 100px 300px;
grid-column-gap: 10px;

Voici le résultat obtenu dans un navigateur :
B 8] 5 vensie x|+ v

« > 0 0 o

un deux

quatre cinq

Figure 2-14 : Mise en place d'une gouttiere entre les colonnes

Les différentes colonnes sont éloignées de 10 pixels les unes des autres. En terme
de largeur occupée, nous avons la premiere colonne qui occupe 200 pixels, suivie
d'une gouttiere qui occupe 10 pixels, suivie d'une seconde colonne qui occupe 100
pixels, suivie d'une nouvelle gouttiere qui occupe 10 pixels et enfin suivie d'une
troisieme colonne qui occupe 300 pixels. Soit une largeur totale de 620 pixels.



Le conteneur et ses propriétés 29

Nous pouvons en faire de méme avec les lignes. Il nous est possible de mettre en
place des gouttieres entre les différentes lignes. Pour cela, nous avons a notre
disposition la propriété grid-row-gap. Cette propriété est également a placer dans
les propriétés CSS du conteneur.

En poursuivant avec notre exemple, nous allons ajouter une gouttiere de 20 pixels

entre les différentes lignes. Ici il n'y a que deux lignes
#grille {
display: grid;
grid-template-columns: 200px 100px 300px;
grid-column-gap: 10px;
grid-row-gap: 20px;

Voici le résultat obtenu dans un navigateur :
BIE| 5 vonsie x [
¢ > 0 a |o
quatre cinq six

Figure 2-15 : Mise en place d'une gouttiére entre les lignes
Ici les lignes sont éloignées de 20 pixels les unes des autres.

Nous avons également la possibilité de mettre en place une gouttiere globale, c'est-
a-dire une gouttiere qui aura la méme taille partout, aussi bien entre les colonnes
qu'entre les lignes. La propriété CSS qui nous permet cela est la propriété grid-gap.
Cette propriété est a placer dans les propriétés CSS du conteneur.

En reprenant notre exemple, nous allons mettre en place une gouttiere de 20 pixels
de large tout autour des lignes et des colonnes.

#grille {
display: grid;
grid-template-columns: 200px 100px 300px;
grid-gap: 20px;




30 Chapitre 2

Voici le résultat obtenu dans un navigateur :
5‘E|Munslte ><‘+ v

SO O

quatre cinq

Figure 2-16 : Mise en place d'une gouttiere générale

Ici les lignes et les colonnes sont toutes éloignées de 20 pixels.

En réalité, la propriété grid-gap est ce que 1'on appelle une super propriété car elle
permet de remplacer les deux propriétés grid-row-gap et grid-column-gap. Pour
cela, il suffit tout simplement de lui donner deux valeurs. Une premiere valeur pour
définir une gouttiere entre les lignes et une deuxieme valeur pour définir une
gouttiere entre les colonnes.

En reprenant notre exemple, nous allons définir une gouttiere de 20 pixels entre les
lignes et une gouttiere de 10 pixels entre les colonnes.

#grille {
display: grid;
grid-template-columns: 200px 100px 300px;
grid-gap: 20px 10px;

Voici le résultat obtenu dans un navigateur :
B8] 5 vensie x|+ v

= = U oo N

quatre cinq

Figure 2-17 : Gouttiére de 20px entre les lignes et 10px entre les colonnes

2.6. Une nouvelle unité de mesure

Nous conservons toujours le méme code HTML et au niveau CSS nous allons
définir une couleur de fond noire pour notre fenétre de navigateur et une couleur de
fond blanche pour notre conteneur. Nous allons réaliser une grille constituée de
deux colonnes d'une largeur de 50% chacune, séparées par une gouttiere de 20
pixels. Nous donnerons une hauteur de 100 pixels a nos trois lignes. Le conteneur
fera 600 pixels de large et 400 pixels de haut. Voici le code CSS complet :

body {
background-color: #000;




Le conteneur et ses propriétés

}
#grille {
display: grid;
grid-template-columns: 50% 50%;
grid-template-rows: 100px 100px 100px;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;
}
.un{
background-color: #fcf;
}
.deux {
background-color: #f9f;
}
rois {
background-color: #f6f;
}
.quatre {
background-color: #fc9;
}
.cing {
background-color: #fc6;
}
.Six {
background-color: #f96;
}
flexbox {
display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;
}




32 Chapitre 2

Voici le résultat de ce code :
a‘ElMo..m x‘+ =

= = @ e 0]

un deux
quatre
cinq six

Figure 2-18 : Deux colonnes de 50% chacune avec une gouttiere de 20px

Quel constat faisons-nous ici ? La grille sort du conteneur. Que s'est-il passé ?
Précédemment nous avons compté la largeur qu'occupait la grille dans son
conteneur. Nous allons refaire le méme calcul pour cette grille. Ici nous avons un
conteneur qui occupe 600 pixels de large. A l'intérieur de ce conteneur nous avons
placé une grille de deux colonnes. La premiére colonne occupe 50% de I'espace qui
lui est alloué, & savoir 50% de la largeur du conteneur, soit 300 pixels exactement.
Ensuite nous avons placé une gouttiere de 20 pixels de large, puis une deuxieme
colonne de 50% de large, soit 300 pixels de large comme la premiere colonne. En
additionnant le tout, nous obtenons 620 pixels. Or le conteneur fait 600 pixels de
large, donc la grille dépasse de 20 pixels de son conteneur. Comment faire pour que
la grille ne sorte pas de son conteneur sans devoir pour autant gérer les largeurs en
pixels ? C'est 1a que les créateurs de grid ont été tres malins ! Ils ont inventé une
nouvelle unité de mesure, les fractions. De ce fait, nous ne réagissons plus en terme
de pourcentage mais en terme de fraction d'écran.

Reprenons notre exemple précédent et remplagons la largeur des colonnes de 50%
en une fraction d'écran, comme ceci

#grille {
display: grid;
grid-template-columns: 1fr 1fr;
grid-template-rows: 100px 100px 100pXx;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;




Le conteneur et ses propriétés

33

Observons le résultat obtenu dans un navigateur :

= ‘ B Monssite

« > 0

@

><‘+ v

un

deux

quatre

six

Figure 2-19 : Deux colonnes de Ifr chacune

Cette fois, la grille ne sort plus de son conteneur et nous n'avons pas eu besoin
d'avoir recours aux pixels. L'unité de mesure fr nous permet de gérer nos colonnes
en unité de fraction d'écran. Ainsi la largeur est automatiquement prise en compte
et calculée par l'interpréteur CSS afin d'occuper de facon proportionnelle I'espace

qui leur est alloué.

Ainsi, nous pouvons tres facilement définir que la deuxieme colonne occupe deux
fois plus d'espace que la premiére colonne grace a 1'unité de mesure fr.

#grille {
display: grid

grid-template-columns: 1fr 2fr;
grid-template-rows: 100px 100px 100pXx;

grid-column-gap: 20px;

background-color: #fff;
width: 600pXx;
height: 400px;

Voici le résultat de ce nouveau code :

= ‘ B Monssite

« > 0

@

><‘+ v

un

deux

trois

quatre

cinq

six

Figure 2-20 : Une colonne de Ifr et une colonne de 2fr



34 Chapitre 2

Grace a cette nouvelle unité de mesure, la deuxieme colonne occupe précisément
deux fois plus d'espace que la premiére colonne au sein de leur conteneur. Nous
n'avons pas eu besoin de réaliser des calculs afin d'arriver a ce résultat. Tout s'est
fait tout seul et de facon ultra précise. La premiere colonne occupe 1 fraction et la
deuxieme occupe 2 fractions de I'espace qui leur est alloué au sein du conteneur.

On peut également se servir de cette nouvelle unité de mesure pour les lignes.
Reprenons notre exemple précédent et demandons-lui que les trois lignes occupent
1 fraction de la hauteur qui leur est allouée au sein du conteneur dont la hauteur a
été définie a 400 pixels.
#grille {

display: grid;

grid-template-columns: 1fr 2fr;

grid-template-rows: 1fr 1fr 1fr;

grid-column-gap: 20px;

background-color: #fff;

width: 600px;

height: 400px;

Voici le résultat obtenu dans un navigateur :
B 8] 5 wensie x|+ v
= = O @ 0]
un deux
trois quatre
cinq six

Figure 2-21 : Trois lignes de 1fr chacune

Il est a préciser que le résultat obtenu ici concernant la hauteur des lignes par
rapport a la hauteur du conteneur, est un résultat que I'on obtient par défaut. C'est-
a-dire, sans besoin de devoir préciser une hauteur de ligne d'une fraction chacune.
En clair, en retirant la propriété grid-template-rows: 1fr 1fr 1fr, nous obtiendrons
exactement le méme résultat. En revanche, ce qui est intéressant avec les unités de
fraction pour calculer les hauteurs de ligne, c'est de les utiliser lorsque l'on
souhaite, par exemple, obtenir une ligne deux fois plus haute que les autres. Voyons
tout de suite un exemple pour bien comprendre.



Le conteneur et ses propriétés 35

Toujours en conservant notre exemple, nous allons ici demander a obtenir une
deuxieme ligne deux fois plus haute que la premiere et la derniere ligne.

#grille {
display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 1fr 2fr 1fr;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;

}

Le résultat de ce code est le suivant :

E‘EIMDHSKE ><‘+ ~

= = U @ 0]

un deux

quatre

Figure 2-22 : Une ligne de 2fr avec deux lignes de Ifr

2.7. La fonction repeat

La fonction repeat va nous permettre de pouvoir répéter un certain nombre de fois
la création de colonnes de méme largeur ou bien de lignes de méme hauteur.
Poursuivons avec notre exemple. Nous allons demander a créer trois colonnes de
1fr de large chacune.

#grille {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;




36 Chapitre 2

Nous obtiendrons le résultat suivant :

E‘EIMDHSKE ><‘+ ~

« > 0 a |o

un deux

quatre cinq

Figure 2-23 : 3 lignes de Ifr chacune

Il est possible d'obtenir le méme résultat en simplifiant quelque peu notre code CSS
grace a la fonction repeat. La fonction repeat va prendre deux arguments. Le
premier argument correspond au nombre de colonnes que l'on souhaite répéter, le
second argument correspond a la largeur que 1'on souhaite donner a ces colonnes.
Chaque argument est séparé par une virgule.
En reprenant 1'exemple précédent, en premier argument nous entrerons le chiffre 3
pour obtenir 3 colonnes et en deuxieéme argument nous entrerons la valeur 1fr pour
donner la largeur de nos 3 colonnes. Voici le code CSS
#grille {

display: grid;

grid-template-columns: repeat(3,1fr);

grid-column-gap: 20px;

background-color: #fff;

width: 600px;

height: 400px;

}

Si nous souhaitons également donner une hauteur de ligne équivalente a chacune
des 2 lignes créées, nous pouvons aussi utiliser la fonction repeat. Par exemple
pour obtenir une hauteur de ligne équivalente de 150 pixels.

#grille {
display: grid;
grid-template-columns: repeat(3,1fr);
grid-template-rows: repeat(2,150px);
grid-column-gap: 20px;
background-color: #fff;
width: 600px;




Le conteneur et ses propriétés 37

height: 400px;

Nous obtiendrons alors 2 lignes de 150 pixels de haut chacune :
E‘EIMOHSKE ><‘+ v
= = U @
un deux trois
quatre cinq six

Figure 2-24 : 2 lignes de 150px de haut

Il est également possible de réaliser des répétitions multiples. C'est-a-dire que nous
pouvons demander a répéter deux fois une colonne de 50px de large et une colonne
de 100px de large. Voyons a quoi va ressembler un tel code CSS, toujours en
utilisant I'exemple précédent.

#grille {
display: grid;
grid-template-columns: repeat(2,50px 100px);
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
height: 400px;

Voici le résultat obtenu dans un navigateur :
E‘EIMons\te ><‘+ v
= o= U o

un| | deux | froi§ |quatre

king six

Figure 2-25 : 2 colonnes de 50px et 100px répétées 2 fois






Chapitre 3

Les contenus et leurs propriétés

3.1. Les lignes de grille verticale

Au début de ce livre, nous avons parlé des lignes de grille. Il s'agit de lignes qui se
trouvent entre les différents contenus.

Ligne de grille 4

Li

gne de irllle 3

Li

gne de irllle 2

Li

gne de irille 1

Figure 3-1 : Lignes de grille verticale
La figure 3-1 nous montre qu'il y a 3 colonnes et donc 4 lignes de grille.

Nous allons reprendre le méme code HTML que nous utilisons depuis le début de
ce livre.

<div id="grille">
<div class="un flexbox">un</div>
<div class="deux flexbox">deux</div>
<div class="trois flexbox">trois</div>
<div class="quatre flexbox">quatre</div>
<div class="cing flexbox">cing</div>
<div class="six flexbox">six</div>

</div>




40 Chapitre 3

Au niveau CSS, nous allons demander a afficher 3 colonnes de 1fr chacune au sein
d'un conteneur de 600 pixels de large. Les colonnes seront espacées par une
gouttiere de 20 pixels de large.

body {

background-color: #000;
}
#grille {

display: grid;

grid-template-columns: repeat(3,1fr);

grid-column-gap: 20px;

background-color: #fff;

width: 600px;
}
.un{

background-color: #fcf;
}
.deux {

background-color: #9f;
}
rois {

background-color: #f6f;
}
.quatre {

background-color: #fc9;
}
.cing {

background-color: #fc6;
}
.Six {

background-color: #f96;
}
flexbox {

display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;




Les contenus et leurs propriétés 41

border: 1px solid #333;

Voici le résultat dans un navigateur
B 8] 5 vensie x|+ v
Laiel O v e . o}
un deux
quatre cinq six

Figure 3-2 : 3 colonnes de Ifr de large espacées de 20px

Nous voulons a présent que la boite numéro 1 occupe les 2 premicres colonnes.
Pour cela nous allons utiliser des propriétés CSS qui seront a placer au sein des
propriétés CSS de la boite numéro 1. La premiere propriété CSS se nomme grid-
column-start. Elle prendra pour valeur la ligne de grille verticale d'ou débutera la
boite numéro 1. Ici ce sera la ligne de grille verticale numéro 1.

La seconde propriété CSS sera grid-column-end. Elle prendra pour valeur la ligne
de grille verticale d'ou s'arrétera la boite numéro 1. Ici ce sera la ligne de grille
verticale numéro 3.

Voici les propriétés CSS a placer pour la boite numéro 1.

.un{
background-color: #fcf;
grid-column-start: 1;
grid-column-end: 3;
}
Voici le résultat dans un navigateur
E‘EIMDHSKE ><‘+ v
= - O o K

un

quatre

Figure 3-3 : La boite numéro 1 occupe 2 colonnes

Si on récapitule, la boite numéro 1 commence a la ligne de grille numéro 1 et elle
se termine a la ligne de grille numéro 3.

Si nous voulions que la boite numéro 1 occupe toute la largeur de la premiere ligne,
alors nous donnerions la valeur 4 a la propriété grid-column-end. Comme ceci

.un{
background-color: #fcf;



42 Chapitre 3

grid-column-start: 1;
grid-column-end: 4;

Voici le résultat obtenu dans un navigateur
E‘EIMOHSKE ><‘+ v
= =2 O @
un
deux trois quatre
cinq six

Figure 3-4 : La boite numéro 1 occupe toute la Iére ligne

Grace aux propriétés grid-column-start et grid-column-end, nous pouvons
positionner n'importe quelle boite ol on veut sur la grille. Par exemple, nous allons
demander que la boite numéro 3 occupe les 2 dernieres colonnes. Nous allons alors
ajouter les nouvelles propriétés CSS a la boite numéro 3.

trois {
background-color: #f6f;
grid-column-start: 2;
grid-column-end: 4;

Voici le résultat obtenu dans un navigateur
E‘EIMDHSKE ><‘+ v
= = B @
un
deux

quatre

Figure 3-5 : La boite numéro 3 occupe les 2 derniéres colonnes

3.2. Les lignes de grille horizontale

Ce que nous avons vu précédemment concernant les lignes de grille liées aux
colonnes, nous pouvons l'appliquer de la méme facon pour les lignes de grille liées
aux lignes. Nous utiliserons alors les deux propriétés CSS suivantes, grid-row-start
et grid-row-end en nous servant des lignes de grille horizontale.



Les contenus et leurs propriétés

La figure 3-6 nous montre qu'il y a 3 lignes et donc 4 lignes de grille.

Ligne de grille 1

Ligne de grille 2

Ligne de grille 3

Ligne de grille 4

Figure 3-6 : Lignes de grille horizontale

43

Nous conservons le méme code source HTML et nous reprenons le code CSS

suivant

body {
background-color: #000;

}

#grille {
display: grid;
grid-template-columns: repeat(3,1fr);
grid-gap: 20px;
background-color: #fff;
width: 600px;

}

.un{
background-color: #fcf;
grid-column-start: 1;
grid-column-end: 4;

}

.deux {
background-color: #9f;

}




44 Chapitre 3

frois {
background-color: #f6f;
grid-column-start: 2;
grid-column-end: 4;
}
.quatre {
background-color: #fc9;
}
.cinq{
background-color: #fc6;
}
.Six {
background-color: #f96;
}
flexbox {
display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;
}

Nous obtenons le résultat suivant

E‘EIMDHSKE ><‘+ v

« > 0 a |o

deux

quatre cinq six

Figure 3-7 : Identique a la figure 3-5 plus une gouttiere entre les lignes

Nous voulons a présent que la boite numéro 2 occupe les deux dernieres lignes.
Nous allons pour cela utiliser la propriété CSS grid-row-start & qui nous allons
donner la valeur 2 et la propriété grid-row-end a qui nous allons donner la valeur 4.
Nous appliquerons ces propriétés aux propriétés CSS de la boite numéro 2.



Les contenus et leurs propriétés 45

Voici le code CSS pour la boite numéro 2

.deux {
background-color: #9f;
grid-row-start: 2;
grid-row-end: 4;

Ceci nous donnera le résultat suivant dans un navigateur
E‘EIMDHSKE ><‘+ v

« > 0 a |o

deux

six

Figure 3-8 : La boite numéro 2 occupe 2 lignes

3.3. Le mot-clé span

Il existe une autre facon de gérer la largeur ou la hauteur d'un contenu en utilisant
le mot-clé span. On lui associe une valeur, cette valeur sera le nombre de colonnes
ou de lignes que devra alors occuper la boite.

Si nous reprenons exactement le méme code CSS que précédemment afin d'obtenir
le résultat de la figure 3-8, au niveau des propriétés CSS de la boite numéro 3 nous
avions ceci

trois {
background-color: #f6f;
grid-column-start: 2;
grid-column-end: 4;

Cela signifie que la boite numéro 3 débute a la ligne de grille verticale numéro 2 et
s'arréte a la ligne de grille verticale numéro 4. En donnant pour valeur le mot-clé
span a la propriété grid-column-end, nous allons donner le nombre de colonnes
que va alors occuper la boite numéro 3. Ce nombre de colonnes est 2. Voici le
nouveau code CSS pour la boite numéro 3 qui nous donnera exactement le méme
résultat que précédemment.



46 Chapitre 3

frois {
background-color: #f6f;
grid-column-start: 2;
grid-column-end: span 2;

Voici le résultat
E‘EIMDHSKE X |+ v
« > 0 @
un
deux trois
quatre cinq
six

Figure 3-9 : Le résultat est identique a la figure 3-8

Sur le méme principe, nous souhaitons que la boite numéro 2 occupe trois hauteurs
de ligne, nous allons alors modifier son code CSS en utilisant le mot-clé span,
comme ceci

.deux {
background-color: #f9f;
grid-row-start: 2;
grid-row-end: span 3;

Voici le résultat de ce nouveau code dans un navigateur
BIE| 5 vonsie x|+ v
S Y
un deux trois
quatre cinq six

Figure 3-10 : La boite 2 occupe 3 lignes

Les autres boites se rangent automatiquement sur les espaces suivants.



Les contenus et leurs propriétés 47

3.4. Propriétés raccourcies

11 existe une propriété CSS qui permet de réunir les propriétés grid-column-start et
grid-column-end, cette propriété se nomme grid-column. Elle s'utilisera de la
méme facon que les deux autres et elle prendra pour valeurs le numéro de la ligne
de grille de départ et le numéro de la ligne de grille d'arrivée. Ou alors elle prendra
pour valeurs le numéro de la ligne de grille de départ et le nombre de colonnes
qu'elle devra occuper.

Reprenons notre code HTML

<div id="grille">
<div class="un flexbox">un</div>
<div class="deux flexbox">deux</div>
<div class="trois flexbox">trois</div>
<div class="quatre flexbox">quatre</div>
<div class="cing flexbox">cing</div>
<div class="six flexbox">six</div>

</div>

Mettons en place une grille de trois colonnes et deux lignes séparées par une
gouttiere de 20 pixels.

body {
background-color: #000;
}
#grille {
display: grid;
grid-template-columns: repeat(3,1fr);
grid-gap: 20px;
background-color: #fff;
width: 600px;
}
.un{
background-color: #fcf;
}
.deux {
background-color: #9f;
}
trois {
background-color: #f6f;
}



48 Chapitre 3

.quatre {
background-color: #fc9;

}

.cing {
background-color: #fc6;

}

.Six {
background-color: #f96;

}

flexbox {
display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Le résultat de ce code sera le suivant
B 5 o « BB
un deux

- ki e

Figure 3-11 : Une grille de 3 colonnes et 2 lignes

Nous allons ici demander que la boite numéro 1 occupe les 2 premieres colonnes.
Nous allons pour cela utiliser la propriété CSS raccourcie grid-column.
Voici le code CSS pour la boite numéro 1 pour obtenir le résultat souhaité.

.un{
background-color: #fcf;
grid-column: 1/ span 2;

}

La premiere valeur correspond a la premiere ligne de grille verticale, la seconde
valeur correspond a la largeur que I'on a souhaité donner a la boite numéro 1.1l est
a préciser que nous devons utiliser un slash pour séparer ces deux valeurs.



Les contenus et leurs propriétés 49

Voici le résultat de ce code dans un navigateur
E‘EIMDHSKE ><‘+ v

S )R

un deux

- ki e

Figure 3-12 : Une seule propriété pour définir le positionnement de la boite 1

A la place du mot-clé span, nous aurions pu utiliser le numéro de la grille verticale
de fin.

.un{

background-color: #fcf;
grid-column: 1/ 3;

Le résultat sera identique au résultat obtenu a la figure 3-12. Il est a préciser que la
aussi, les deux valeurs seront a séparer par un slash.

Ce qui est vrai pour les colonnes et également vrai pour les lignes. Nous pouvons
donc utiliser une propriété CSS qui permet de réunir les propriétés grid-row-start
et grid-row-end, cette propriété se nomme grid-row. Elle s'utilisera de la méme
facon que les deux autres et elle prendra pour valeurs le numéro de la ligne de
grille de départ et le numéro de la ligne de grille d'arrivée. Ou alors elle prendra
pour valeurs le numéro de la ligne de grille de départ et le nombre de lignes qu'elle
devra occuper.

En reprenant le méme code que précédemment, nous allons demander que la boite
numéro 3 occupe deux hauteurs de ligne.

Voici le code CSS pour la boite numéro 2

trois {
background-color: #{6f;
grid-row: 2 / 4;

Nous aurions également pu écrire le code suivant en utilisant le mot-clé span

trois {
background-color: #f6f;
grid-row: 2 / span 2;




50 Chapitre 3

Le résultat sera identique

E‘EIMDHSKE ><‘+ ~

« > 0 a |o

Figure 3-13 : Une seule propriété pour définir le positionnement de la boite 3



Chapitre 4

Autres propriétés

4.1. Changer le sens d'affichage

Nous allons voir ici qu'il est possible de changer tres facilement 1'ordre d'affichage
des différentes boites.
Nous allons reprendre le méme code HTML que nous utilisons depuis le début.

<div id="grille">
<div class="un flexbox">un</div>
<div class="deux flexbox">deux</div>
<div class="trois flexbox">trois</div>
<div class="quatre flexbox">quatre</div>
<div class="cinq flexbox">cing</div>
<div class="six flexbox">six</div>

</div>

Au niveau CSS, nous allons demander a afficher nos différentes boites div sur trois
colonnes séparées par une gouttiere de 20 pixels.

body {
background-color: #000;
}
#grille {
display: grid;
grid-template-columns: repeat(3,1fr);
grid-column-gap: 20px;
background-color: #fff;
width: 600px;
}
.un{
background-color: #fcf;
}
.deux {
background-color: #9f;
}
trois {




52 Chapitre 4

background-color: #f6f;
}
.quatre {
background-color: #fc9;
}
.cing {
background-color: #fc6;
}
.Six {
background-color: #f96;
}
flexbox {
display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;
}

Voici le résultat obtenu dans un navigateur
BIE| 5 vonsie x|+ v

& = B @ 0]

un deux

quatre cinq

Figure 4-1 : Les 6 boites sont alignées sur 3 colonnes

On remarque que le sens de disposition des différentes boites se fait de gauche a
droite et de haut en bas, comme le sens de lecture. Nous avons la possibilité de
modifier ce sens. Au lieu que les boites soient affichées de gauche a droite et de
haut en bas, nous pouvons les afficher de haut en bas et de gauche a droite. Pour
cela nous allons utiliser la propriété grid-auto-flow. Cette propriété a pour valeur
par défaut la valeur row. Row signifie ligne en francais. Cela se traduit bien par un
affichage en ligne. Si nous souhaitions un affichage en colonne, nous devrions
alors donner la valeur column. Cependant attention, pour que cela fonctionne nous
devons également placer la propriété grid-template-rows.

Nous allons modifier le sens d'affichage de nos boites div. La propriété grid-auto-
Sflow sera a utiliser au sein des propriétés du conteneur.



Autres propriétés 53

Voici le nouveau code CSS du conteneur
#grille {
display: grid;
grid-template-columns: repeat(3,1fr);
grid-template-rows: repeat(2,1fr);
grid-auto-flow: column;
grid-column-gap: 20px;
background-color: #fff;
width: 600px;

}

Voici le résultat obtenu dans un navigateur
BIE| 5 vonsie x|+ v
¢« > 0O @ o)

un

Figure 4-2 : Ordre d'affichage des boites en colonne

Cette fois les différentes boites div sont affichées de haut en bas et de gauche a
droite.

4.2. Créer une colonne virtuelle

En cas de besoin, il est possible de créer une nouvelle colonne méme si celle-ci n'a
pas été déclarée au préalable dans la propriété grid-template-columns.

Afin de comprendre le fonctionnement de cet effet, nous allons reprendre le méme
code HTML que celui que nous utilisons depuis le début de ce livre. Au niveau
CSS, nous allons demander a afficher les six boites sur trois colonnes de 1fr
chacune. Le conteneur fera 600 pixels de large.

body {
background-color: #000;

}
#grille {
display: grid;
grid-template-columns: repeat(3,1fr);
background-color: #fff;
width: 600px;




54

.un{
background-color: #fcf;
}
.deux {
background-color: #f9f;
}
trois {
background-color: #f6f;
}
.quatre {
background-color: #fc9;
}
.cing {
background-color: #fc6;
}
.Six {
background-color: #f96;
}
flexbox {
display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;
}

Chapitre 4

Voici le résultat obtenu dans un navigateur

= ‘ B Monsite

= = B @& 0]

><‘+ v

un

deux

quatre

Figure 4-3 : 6 boites alignées sur 3 colonnes

cinq

La boite numéro 3 occupe 1 largeur de colonne, comme les cinq autres boites.
Maintenant nous souhaiterions que la boite numéro 3 occupe 2 largeurs de colonne
mais sans modifier 'emplacement des autres boites. C'est-a-dire que 1'on rajouterait



Autres propriétés 55

une nouvelle colonne spécialement pour la boite numéro 3.

Pour réaliser cela, il nous suffit d'aller dans les propriétés CSS de la boite numéro 3
et d'ajouter la propriété grid-column comme nous l'avons déja vu. Les valeurs de la
propriété grid-column pourraient étre 3 pour désigner la ligne de grille de départ et
span 2 pour indiquer le nombre de colonnes que devra occuper la boite numéro 3.

rois {
background-color: #f6f;
grid-column: 3/ span 2;

Voici le résultat obtenu dans un navigateur
E‘EIMDHSKE ><‘+ v

« > 0 a |o

un deux

quatre cinq

Figure 4-4 : On rajoute la propriété grid-column a la boite numéro 3

On s'apercoit que cela n'a strictement rien changé. La boite numéro 3 occupe
toujours 1 seule largeur de colonne et non 2 comme souhaité. Le résultat obtenu est
normal car on a demandé a débuter la boite numéro 3 a la troisieme ligne de grille
puis de l'étendre sur 2 colonnes. Or apres la troisieme ligne de grille il n'y a qu'une
seule colonne. Pour que cela fonctionne, nous devons alors créer une colonne
virtuelle. Pour cela nous devons utiliser une nouvelle propriété CSS au sein des
propriétés du conteneur. Cette nouvelle propriété se nomme grid-auto-columns.
Elle prendra pour valeur une largeur de colonne, celle que l'on souhaite. Par
exemple, on pourrait demander que la nouvelle colonne virtuelle fasse 100 pixels
de large. Voici le nouveau code CSS du conteneur

#grille {
display: grid;
grid-template-columns: repeat(3,1fr);
grid-auto-columns: 100pXx;
background-color: #fff;
width: 600px;




56 Chapitre 4

Voici le résultat obtenu dans un navigateur
BIE| 5 vonsie * [F™

« > 0 a |o

un deux

quatre cinq six

Figure 4-5 : La boite numéro 3 occupe 2 colonnes

4.3. Créer une ligne virtuelle

Si nous sommes capables de créer des colonnes virtuelles alors nous sommes
capables de créer des lignes virtuelles. C'est ce que nous allons voir ici.

Nous conservons exactement toutes les mémes propriétés CSS que précédemment.
Nous allons simplement demander que la boite numéro 4 occupe 2 lignes. Pour
cela nous allons utiliser la propriété grid-row que nous allons appliquer aux
propriétés CSS de la boite numéro 4. Nous lui donnerons pour valeur le chiffre 2
car il correspond a la deuxiéme ligne de grille horizontale et la valeur span 2 pour
lui demander d'occuper 2 lignes. Voici le code CSS

.quatre {
background-color: #f9f;
grid-row: 2 / span 2;

Comme nous l'avons fait avec les colonnes virtuelles, nous allons ajouter la
propriété grid-auto-rows au conteneur, afin de pouvoir autoriser la création de
lignes virtuelles. Nous lui donnerons pour valeur la hauteur que nous souhaitons
donner aux lignes de grille virtuelles, par exemple 50 pixels.
#grille {

display: grid;

grid-template-columns: repeat(3,1fr);

grid-auto-columns: 100px;

grid-auto-rows: 50px;

background-color: #fff;

width: 600px;




Autres propriétés 57

Voici le résultat obtenu dans un navigateur
‘E‘EIMDHSKE ><‘+ v

= = B @ 0]

un

quatre

Figure 4-6 : La boite numéro 4 occupe 2 lignes

4.4. Application aux balises HTML5

Nous allons voir ici une application de ce que nous avons appris jusqu'a présent.
Nous allons aborder la mise en page d'un site web. Vous allez voir toute la
puissance de la technologie grid.

Nous allons réaliser la mise en page d'un site web simple et classique. Nous allons
placer un header en haut de la page, un footer en bas de la page et entre ces deux
zones, nous allons positionner une barre de navigation a c6té d'une zone d'article.
Voila ci-dessous le résultat que nous souhaitons obtenir.

ARTICLE

Figure 4-7 : Résultat souhaité

Au niveau HTML, nous allons mettre en place les balises structurantes du HTML 5
que nous enfermerons dans une boite a laquelle nous donnerons l'identifiant grille
afin d'en faire un conteneur. C'est a ce conteneur que nous donnerons la
technologie grid qui va nous permettre de mettre en page notre site internet.

Voici le code HTML :

<div id="grille">
<header>HEADER</header>




58 Chapitre 4

<nav>NAV</nav>

<article>ARTICLE</article>

<footer>=FOOTER</footer>
</div>

Maintenant que les balises structurantes du HTML 5 sont en place, nous allons leur
donner une couleur de fond afin de bien pouvoir les distinguer sur une page web.
Pour cela nous créons une feuille de style externe que nous relions a notre
document HTML comme on peut le faire habituellement en utilisant la balise link
qui permet d'inclure des styles CSS a une page web. La balise se place au niveau
des balises meta. Voici le document HTML complet.

<ldoctype html>

<html>

<head>

<meta charset="utf-8">

<title>Mon site</title>

<link rel="stylesheet" href="style.css" />
</head>

<body>

<div id="grille">
<header>HEADER</header>
<nav>NAV</nav>
<article>ARTICLE</article>
<footer=FOOTER</footer>

</div>

</body>

</html>

Ici, la feuille de style que nous avons nommée style.css a été placée au méme
niveau que notre fichier HTML. Passons a présent a la feuille de style et donnons
une couleur de fond a chaque balise structurante du HTML 5 afin de bien pouvoir
les distinguer sur 1'écran d'un navigateur web. Nous en profiterons également pour
neutraliser les marges par défaut du navigateur en placant les propriétés margin et
padding a 0 pour le body.
body {
margin: 0;
padding:0;




Autres propriétés 59

}
header {
background-color: #6f0;
}
nav {
background-color: #993;
}
article {
background-color: #c93;
}
footer {
background-color: #f90;
}
Voici le résultat de ce code dans un navigateur web
] 5 onse | = @
= o= O @ [0} * = L Ew

ER

Figure 4-8 : Une couleur de fond aux balises structurantes du HTML 5

Nous pouvons constater que les balises structurantes du HTML 5 se comportent

comme les boites div, a savoir qu'elles ont un comportement de type bloc par
défaut.

Afin que le rendu de nos boites soit plus agréable, nous allons ajouter une classe
flexbox a notre feuille de style. La méme classe flexbox dont on s'est servi
précédemment.

flexbox {
display: flex;
justify-content: center;
padding: 20pXx;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Nous allons donc ajouter une classe flexbox a nos balises structurantes.

<div id="grille">
<header class="flexbox">HEADER</header>




60 Chapitre 4

<nav class="flexbox">NAV</nav>

<article class="flexbox">ARTICLE</article>

<footer class="flexbox">FOOTER</footer>
</div>

Voici le résultat dans un navigateur.
[EVE] 5 vonsie « -

S CRE N © | x= £ B -

HEADER

Figure 4-9 : Ajout de la classe flexbox

Nous allons a présent nous servir de la technologie grid pour mettre en forme notre
site web. Pour cela nous allons écrire les propriétés CSS de 1'identifiant grille. Ce
que l'on veut, c'est obtenir un site avec deux colonnes. Nous en profiterons pour
donner une largeur de 600 pixels et une hauteur de 400 pixels a l'identifiant grille.
Nous centrerons également notre site a I'écran.

Voici le code CSS de 1'identifiant grille.

#grille {
display: grid;
grid-template-columns: 1fr 2fr;
width: 600px;
height: 400px;
margin: auto;

}

Voici le résultat obtenu dans un navigateur

HEADER

Figure 4-10 : Mise en page sur 2 colonnes



Autres propriétés 61

Nous obtenons bien un site mis en page sur deux colonnes. Cependant, ce n'est pas
tout a fait le résultat que nous souhaitons obtenir. En effet, nous voulons
uniquement la nav et l'article sur deux colonnes, pas le header ni le footer. Pour
résoudre ce probléme, nous connaissons la propriété grid-column qui va nous
permettre de pouvoir positionner un élément en lui donnant sa ligne de grille de
départ ainsi que le nombre de colonnes qu'elle devra occuper. Nous allons donc
ajouter cette propriété CSS au header ainsi qu'au footer.

header {
background-color: #6f0;
grid-column: 1/ span 2;

}
footer {
background-color: #6f0;
grid-column: 1/ span 2;
}
Voici le résultat obtenu dans un navigateur
& 5| 5 monste x|+ v SRR
= = O W o] * *x 7 B -
HEADER

Figure 4-11 : Obtention de la mise en page du site souhaité

Et si nous voulons gérer la hauteur des lignes de nos différentes boites, il nous
suffit de l'indiquer dans les propriétés CSS du conteneur, comme nous l'avons
appris.
#grille {
display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;




62 Chapitre 4

Voici le résultat obtenu dans un navigateur
& 5|5 monste e S

= = O @ N ¥ k= 2 B -

HEADER

Figure 4-12 : Gestion des hauteurs de ligne

Nous venons de faire une petite révision de ce que nous avons appris jusqu'a
présent concernant la technologie grid. Il existe une autre facon d'aborder la mise
en page d'un site web toujours en utilisant la technologie grid. La voici.

4.5. Définition des zones

Comme convenu, nous allons voir une nouvelle technique de mise en page d'un site
web. Nous allons conserver le méme code HTML que précédemment.

<div id="grille">
<header class="flexbox">HEADER</header>
<nav class="flexbox">NAV</nav>
<article class="flexbox">ARTICLE</article>
<footer class="flexbox">FOOTER</footer>
</div>

Concernant le résultat final voulu, ce sera exactement la méme mise en page que
précédemment. A savoir, le header sur une ligne, la nav et l'article sur une
deuxiéme ligne et enfin le footer sur une troisieéme ligne.

Nous allons reprendre le méme code CSS que précédemment, mais nous retirons
les propriétés grid-column du header et du footer.

body {
margin: O;
padding:0;

}
#grille {
display: grid;
grid-template-columns: 1fr 2fr;




Autres propriétés

grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;
}
header {
background-color: #6f0;
}
nav {
background-color: #993;
}
article {
background-color: #c93;
}
footer {
background-color: #f90;
}
flexbox {
display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;
}
Cela va automatiquement remettre notre site sur deux colonnes.
BB © vonsie < [ = 8
= 2 B & [0} * x L e -

HEADER

Figure 4-13 : Mise en page sur 2 colonnes



64 Chapitre 4

Afin de pouvoir mettre en page notre site web comme on le souhaite, nous allons
définir des zones au niveau CSS. Pour cela nous allons utiliser une propriété qui se
nomme grid-area. Cette propriété va prendre pour valeur un nom, celui que 1'on
souhaite. Le but étant de nommer la zone.

Nous avons en tout quatre zones : la zone du header, 1a zone de la nav, la zone de
l'article et la zone du footer. Dans notre feuille de style, nous allons donc donner
un nom a ces zones. Pour des raisons de simplicité, nous leur donnerons le nom de
leur élément HTML.

body {
margin: O;
padding:0;

}

#grille {
display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;

}

header {
background-color: #6f0;
grid-area: header;

}

nav {
background-color: #993;
grid-area: nav;

}

article {
background-color: #c93;
grid-area: article;

}

footer {
background-color: #f90;
grid-area: footer;

}

flexbox {
display: flex;




Autres propriétés 65

justify-content: center;
padding: 20pXx;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

Maintenant que nous avons défini des zones en niveau CSS, nous allons utiliser la
propriété grid-template-areas dans les propriétés CSS du conteneur. Clest
maintenant que vous allez comprendre la puissance de grid. En effet, la propriété
grid-template-areas va nous permettre de positionner les zones que 1'on a définies
exactement comme on le souhaite.
Reprenons les propriétés CSS de notre conteneur.
#grille {

display: grid;

grid-template-columns: 1fr 2fr;

grid-template-rows: 1fr 4fr 1fr;

width: 600px;

height: 400px;

margin: auto;

}

Nous y avons défini deux colonnes. Une premiere colonne de 1fr de large et une
deuxieme colonne de 2fr de large.

Afin de positionner nos quatre zones, nous devons ajouter la propriété grid-
template-areas. Nous lui donnerons pour premicre valeur la zone header que nous
répéterons deux fois, car cette zone devra occuper les deux colonnes sur la
premiere ligne. Ce qui nous donne ceci :

grid-template-areas:
"header header"

Nous lui donnerons ensuite pour deuxieéme valeur, la zone nrav suivie de la zone
article qui se retrouveront sur la deuxieme ligne. Ce qui donne ceci :

grid-template-areas:
"header header"
"nav article"




66 Chapitre 4

Et enfin nous lui donnerons pour troisiéme valeur la zone foofer que nous
répéterons deux fois, car cette zone devra occuper les deux colonnes sur la
troisieme ligne. Ce qui nous donne ceci :

grid-template-areas:
"header header"
"nav article"
"footer footer";

Voici notre code CSS complet :
body {

margin: 0;

padding:0;

}
#grille {
display: grid;
grid-template-columns: 1fr 2fr;
grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;
grid-template-areas:
"header header"
"nav article"
"footer footer";
}
header {
background-color: #6f0;
grid-area: header;
}
nav {
background-color: #993;
grid-area: nav;
}
article {
background-color: #c93;
grid-area: article;




Autres propriétés 67

footer {
background-color: #f90;
grid-area: footer;

}

flexbox {
display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Et voici le résultat de ce code dans un navigateur :
& 5|5 monste x|+ v R

= =2 B @ N ¥ k= 2 B -

HEADER

Figure 4-14 : Mise en page souhaitée

Il est tres facile de pouvoir modifier la mise en page en cas de besoin. Nous
pouvons tres bien demander a inverser I'ordre d'apparition de la nav et de 1'article.
Pour cela il nous suffit de donner la valeur de 2 fr a la premiére colonne, puis
d'inverser les zones nav et article dans les propriétés CSS de grid-template-areas.

#grille {
display: grid;
grid-template-columns: 2fr 1fr;
grid-template-rows: 1fr 4fr 1fr;
width: 600px;
height: 400px;
margin: auto;
grid-template-areas:
"header header"
"article nav"




68 Chapitre 4

"footer footer";

}

Voici le résultat dans un navigateur :
& 5|5 monste x|+ v R

= =2 B @ N ¥ k= 2 B -

HEADER

Figure 4-15 : Inversion de l'article et de la navigateur

4.6. La fonction minmax

La fonction CSS minmax permet de pouvoir gérer la hauteur de nos différentes
boites.
Nous allons conserver les mémes codes que précédemment, en modifiant
simplement les valeurs de la propriété grid-template-rows en les passant en pixels.
Nous retirerons la propriété height du conteneur.
#grille {
display: grid;
grid-template-columns: 2fr 1fr;
grid-template-rows: 100px 200px 100pXx;
width: 600px;
margin: auto;
grid-template-areas:
"header header"
"article nav"
"footer footer";

}

Puis au niveau HTML, nous allons ajouter du texte au sein de l'article.

<div id="grille">
<header class="flexbox">HEADER</header>
<nav class="flexbox">NAV</nav>
<article class="flexbox">




Autres propriétés 69

Tantum autem cuique tribuendum, primum quantum ipse efficere possis,
deinde etiam quantum ille quem diligas atque adiuves, sustinere. Non enim
neque tu possis, quamvis excellas, omnes tuos ad honores amplissimos
perducere, ut Scipio P. Rupilium potuit consulem efficere, fratrem eius L. non
potuit. Quod si etiam possis quidvis deferre ad alterum, videndum est tamen,
quid ille possit sustinere.

</article>
<footer class="flexbox">FOOTER</footer>
</div>

Voici le résultat de ce code dans un navigateur :
& 5| 5 monste x|+ v R

= = U o N ¥ k2 B -

HEADER

tuos ad honores
amplissimos perducere, ut
Scipio P. Rupilium potuit
consulem efficere, fratrem
eius L. non potuit. Quod si
etiam possis quidvis deferre
ad alterum, videndum est
tamen, quid ille possit
sustinere.

Figure 4-16 : Mise en place d'un texte dans la paire de balise article

Nous pouvons clairement voir que le texte dépasse de la zone article. Pourquoi
cela ? La réponse vient du fait que la ligne ou se trouve la zone article a été définie
comme ayant une hauteur fixe de 200 pixels. Le texte que nous avons inséré dans
cette zone est trop long et il sort donc de la zone. Pour résoudre ce probléme, nous
avons a notre disposition la fonction CSS minmax. Elle sera a placer dans les
valeurs de la propriété grid-template-rows. Elle prendra pour arguments deux
valeurs. La premiere valeur correspondra a la hauteur minimum que I'on souhaitera
donner a la boite et la seconde valeur correspondra a la valeur maximum que 1'on
souhaitera donner a la boite.

#grille {
display: grid;
grid-template-columns: 2fr 1fr;
grid-template-rows: 100px minmax(200px,auto) 100px;
width: 600px;




70 Chapitre 4

height: 400px;

margin: auto;

grid-template-areas:
"header header"
"article nav"
"footer footer";

Voici le résultat de ce code dans un navigateur

HEADER

Figure 4-17 : Adaptation de l'article a son contenu

Grace a la fonction minmax, la hauteur de la deuxieme ligne sera de 200 pixels
minimum et elle s'adaptera automatiquement a son contenu afin que celui-ci ne se
trouve pas au dehors de l'article.

4.7. La propriété order

Cette propriété va pouvoir nous permettre d'ordonner les différentes boites
exactement comme on en a envie et ceci peu importe 1'ordre dans lequel ont été
écrites les balises HTML.
Pour commencer, nous allons créer quatre boites div que nous allons déclarer dans
un fichier HTML que nous relions a une feuille de style.

<!doctype html>

<html>




Autres propriétés 71

<head>
<meta charset="utf-8">
<title>Mon site</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="grille">
<div class="un flexbox">UN</div>
<div class="deux flexbox">DEUX</div>
<div class="trois flexbox">TROIS</div>
<div class="quatre flexbox">QUATRE</div>
</div>
</body>
</html>

Les quatre boites div sont enfermées dans une boite qui a pour identifiant grille, ce
sera le conteneur. Les quatre boites div possedent une classe commune, la classe
Sflexbox. Voici le fichier style.css :

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,200px);

width: 400px;

margin: auto;
}
.un{

background-color: #6f0;
}
.deux {

background-color: #993;
}
trois {

background-color: #c93;
}
.quatre {

background-color: #f90;




72 Chapitre 4

flexbox {
display: flex;
justify-content: center;
padding: 20pXx;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

Voici le résultat de ce code dans un navigateur :

& 8| 5 vonsie x|+ v = e

<« > 0O & |0 Lkl = 2 & o=

Figure 4-18 : Mise en place de 4 boites sur 2 colonnes

Le positionnement des quatre boites est cohérent avec notre code CSS. En effet,
l'affichage se fait bien de gauche a droite et de haut en bas, comme nous 1'avons
déja vu plus haut dans ce chapitre.

La propriété order va nous permettre de modifier ce positionnement. Cette
propriété sera a placer dans les propriétés CSS des contenus. Elle prendra pour
valeur un chiffre. Plus ce chiffre sera important et plus le positionnement de la
boite qui contient cette propriété sera éloigné. La valeur par défaut de propriété
order est la valeur 0.

Si nous souhaitons positionner la boite numéro 1 en dernier, nous devons alors lui
donner la propriété order en lui donnant une valeur supérieure a 0.

.un{

background-color: #6f0;
order: 1;

Le fait d'avoir donné la valeur 1 a la propriété order de la boite un placera
automatiquement cette boite en dernier. Par défaut, les boites deux, trois et quatre
ont la valeur O pour la propriété order.



Autres propriétés 73

Voici le résultat de ce code dans un navigateur :
& 5|5 monste x|+
¢« > 0 & o | ok 2 o' -

Figure 4-19 : La boite un est a la fin

Si nous souhaitons placer la boite quatre en premier, nous devons alors lui donner
une propriété order d'une valeur plus petite que les autres. Je rappelle que par
défaut, sa valeur est 0. Il est tout a fait possible de donner des valeurs négatives.

.quatre {
background-color: #f90;
order: -1;

Voici le résultat de ce code dans un navigateur :
B @] 5 monsie x|+ v SR
« - o & B k= LB -

Figure 4-20 : La boite quatre est au début

Grace a la propriété order il est trés facile de déplacer des boites sans avoir a
toucher au code HTML. Plus le chiffre sera important et plus la boite sera éloignée.
Réciproquement, plus le chiffre sera petit et plus la boite sera positionnée en avant.






Chapitre 5

Déplacement des contenus

5.1. Présentation

Il est tout a fait possible de pouvoir déplacer la grille ou bien des contenus suivant
un axe horizontal ou bien un axe vertical. C'est ce que nous allons voir ensemble
dans ce nouveau chapitre.

Tout d'abord, nous allons mettre en place un document HTML qui possédera un
conteneur et quatre contenus. Nous donnerons une classe commune a nos contenus,
la classe flexbox, comme nous l'avions fait précédemment. Quant au conteneur,
nous lui donnerons 1'identifiant grille.

<ldoctype htmi>

<html>

<head>

<meta charset="utf-8">

<title>Mon site</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="grille">
<div class="un flexbox">UN</div>
<div class="deux flexbox">DEUX</div>
<div class="trois flexbox">TROIS</div>
<div class="quatre flexbox">QUATRE</div>

</div>

</body>

</html>

Au niveau CSS, nous allons demander que le conteneur fasse 75% de large sur 400
pixels de haut avec un fond blanc, qu'il soit centré sur I'écran et qu'il contienne une
grille de deux colonnes. Nous donnerons également une hauteur de 100 pixels a ces
lignes. Pour les contenus, nous leur donnerons une couleur afin de les distinguer et
nous donnerons a la classe flexbox les mémes propriétés que nous lui avons

données précédemment. Enfin, nous demanderons a avoir une couleur de fond
d'écran noire.

body {
background-color: #000;




76 Chapitre 5

}
#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;
}
.un{
background-color: #6f0;
}
.deux {
background-color: #993;
}
trois {
background-color: #c93;
}
.quatre {
background-color: #f90;
}
flexbox {
display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;
}




Déplacement des contenus 77

Voici le résultat de ce code dans un navigateur :

& a5 monste x|+ v T

ISEE RGN O bkl = £ & o=

Figure 5-1 : Résultat de notre code

Maintenant que nous avons mis en place les bases de notre code CSS, nous allons
voir comment il est possible de déplacer la grille ainsi que les différents contenus
suivant un axe horizontal et suivant un axe vertical.

5.2. Alignement de la grille sur I'axe horizontal

Sur la figure 5-1, nous voyons que la grille débute sur le bord gauche du conteneur.
Il s'agit d'un comportement par défaut. Cet alignement est accessible via la
propriété CSS justify-content. Cette propriété est a placer au sein des propriétés du
conteneur. De ce fait, nous pouvons tres facilement déplacer la grille le long de
l'axe horizontal. La propriété justify-content prend différentes valeurs. Par défaut,
elle prendra la valeur start. Et si nous souhaitons positionner la grille le long du
bord droit du conteneur, alors la propriété justify-content prendra la valeur end.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: end;
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;




78 Chapitre 5

Voici le résultat dans un navigateur :

B8] 5 monste < [ ST

¢« > 0 a |o

Figure 5-2 : Alignement de la grille le long du bord droit du conteneur

Pour centrer la grille suivant 1'axe horizontal, la propriété justify-content prendra
alors la valeur center.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;

Voici le résultat dans un navigateur :

B 5| 5 monste < [ e

« > 0 8 o S

Figure 5-3 : Centrage de la grille selon l'axe horizontal



Déplacement des contenus 79

Toujours grice a la propriété justify-content nous pouvons séparer les colonnes. En
utilisant la valeur space-between, nous faisons débuter la grille suivant le bord
gauche du conteneur et nous la faisons se terminer le long de son bord droit.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: space-between;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

B 55 Monste < [~ s

<« > 0O & |0 x| ok L2

QUATRE

UN

Figure 5-4 : Espacement en space-between

Et s'il devait y avoir d'autres colonnes alors elles seraient espacées de facon
proportionnelle les unes des autres entre la premiere colonne et la derniere colonne.

#grille {
display: grid;
grid-template-columns: repeat(3,200px);
grid-template-rows: repeat(2,100px);
justify-content: space-between;
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;




80 Chapitre 5

Voici le résultat dans un navigateur :

& 5 Monste <[+ v e

« > 0 a |0

UN

QUATRE

Figure 5-5 : Espacement en space-between avec 3 colonnes

Nous pouvons également aligner nos colonnes le long de 1'axe horizontal en space-
around. Cela aura pour incidence d'éloigner les colonnes de chaque extrémité de la
moitié de la distance qu'il existe entre chaque colonne.

#grille {
display: grid;
grid-template-columns: repeat(3,200px);
grid-template-rows: repeat(2,100px);
justify-content: space-around;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

Voici le résultat dans un navigateur :

B 8] S wonste <[+ v S

< > 0O @ 0]

UN

QUATRE

Figure 5-6 : Espacement en space-around
Et pour étre tout a fait complet avec les espacements des contenus le long de l'axe
horizontal, nous avons la valeur space-evenly qui donnera la méme distance entre



Déplacement des contenus 81

les bords et les contenus et entre les contenus eux-mémes.
#grille {
display: grid;
grid-template-columns: repeat(3,200px);
grid-template-rows: repeat(2,100px);
justify-content: space-evenly;
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

& 5 Monste <[+~ e

« > 0 a |0

UN

QUATRE

Figure 5-7 : Espacement en space-evenly

5.3. Alignement de la grille sur I'axe vertical

Nous venons de voir comment il est possible d'aligner la grille suivant l'axe
horizontal, maintenant nous allons voir comment il est possible de l'aligner suivant
l'axe vertical. Pour cela nous avons a notre disposition la propriété CSS align-
content. Cette propriété sera également a placer dans les propriétés CSS du
conteneur. Par défaut elle a la valeur sfart, c'est-a-dire qu'elle débute le long du
bord haut du conteneur. Si nous voulons que la grille débute le long du bord bas du
conteneur, alors nous devons donner la valeur end a la propriété align-content.

Nous gardons le méme code HTML que précédemment, a savoir

<ldoctype html>
<html>

<head>

<meta charset="utf-8">
<title>Mon site</title>




82 Chapitre 5

<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="grille">
<div class="un flexbox">UN</div>
<div class="deux flexbox">DEUX</div>
<div class="trois flexbox">TROIS</div>
<div class="quatre flexbox">QUATRE</div>
</div>
</body>
</html>

Concernant le code CSS, nous reprenons le méme code qu'au tout début de ce
chapitre et nous plagons la propriété align-content dans le conteneur en lui donnant
pour valeur end.

body {
background-color: #000;
}
#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
align-content: end;
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;
}
.un {
background-color: #6f0;
}
.deux {
background-color: #993;
}
trois {
background-color: #c93;
}




Déplacement des contenus 83

.quatre {
background-color: #f90;
}
flexbox {
display: flex;
justify-content: center;
padding: 20pXx;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Voici le résultat dans un navigateur :

B 8] S wonste x[F > e

« > 0 o o [

Figure 5-8 : Alignement vertical au bord bas du conteneur

Si nous voulons centrer la grille le long de l'axe vertical, nous allons alors donner
la valeur center a la propriété align-content.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
align-content: center;
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;




84 Chapitre 5

Voici le résultat dans un navigateur :

B 5|5 Monste * [~ S

« > 0 6 o [

Figure 5-9 : Alignement vertical centré

Si nous souhaitons que les contenus occupent toute la hauteur qui leur est allouée,
nous devons alors donner la valeur stretch a la propriété align-content. Attention
cependant a2 ne pas conserver la propriété grid-template-rows qui définit les
hauteurs de lignes.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
/*grid-template-rows: repeat(2,100px);*/
align-content: stretch;
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;

Voici le résultat dans un navigateur :

B 5 Monste <[+~ e

« > 0 8 o FE R S

UN

Figure 5-10 : Les contenus occupent toute la hauteur qui leur est allouée



Déplacement des contenus 85

Il est a préciser que la valeur stretch est la valeur par défaut de la propriété align-
content. Bien-sr pour qu'elle fonctionne, le conteneur ne doit pas avoir de
propriété grid-template-rows.

Toujours grace a la propriété align-content nous avons la possibilité de pouvoir
séparer les lignes. En utilisant la valeur space-between, nous faisons alors débuter
la grille suivant le bord haut du conteneur et nous la faisons se terminer le long du
bord bas du conteneur.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
align-content: space-between;
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

B8] 5 monste < [ S

« > 0 6 o e =

Figure 5-11 : Espacement vertical en space-between

Nous pouvons également aligner nos lignes le long de 1'axe vertical en space-
around. Cela aura pour incidence d'éloigner les lignes de chaque extrémité de la
moitié de la distance qu'il existe entre chaque ligne.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
align-content: space-around;
background-color: #fff;




86 Chapitre 5

width: 75%;
height: 400px;
margin: auto;

}

Voici le résultat dans un navigateur :

& 5 monste <[+~ S

<« > O & |0 K| ok L.

Figure 5-12 : Espacement vertical en space-around

Et enfin, nous avons la valeur space-evenly qui donnera la méme distance entre les
bords et les contenus et entre les contenus eux-mémes.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
align-content: space-evenly;
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;




Déplacement des contenus 87

Voici le résultat dans un navigateur :

& 5|5 Monste <[+~ S

<« > O & |0 *| * £ &

QUATRE

Figure 5-13 : Espacement vertical en space-evenly

5.4. Alignement de tous les contenus

Nous avons vu que nous pouvons tres facilement manipuler la grille en elle-méme,
ici nous allons voir qu'il est également tout a fait possible de manipuler les
contenus.

Reprenons notre code HTML sans apporter de modification.

<ldoctype htmi>

<html>

<head>

<meta charset="utf-8">

<title>Mon site</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="grille">
<div class="un flexbox">UN</div>
<div class="deux flexbox">DEUX</div>
<div class="trois flexbox">TROIS</div>
<div class="quatre flexbox">QUATRE</div>

</div>

</body>

</html>

Au niveau du code CSS, nous allons reprendre le code précédent mais en

demandant a aligner la grille verticalement et horizontalement au sein du
conteneur.



88 Chapitre 5
body {
background-color: #000;
}
#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;
}
.un{
background-color: #6f0;
}
.deux {
background-color: #993;
}
trois {
background-color: #c93;
}
.quatre {
background-color: #f90;
}
flexbox {
display: flex;
justify-content: center;
padding: 20pXx;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;
}




Déplacement des contenus 89

Voici le résultat de ce code dans un navigateur :

53 wonsite < = =

> O & |0 bl = £ &

Figure 5-14 : La grille est centrée verticalement et horizontalement

Afin de manipuler la grille, nous avons utilisé les propriétés justify-content et
align-content. Pour manipuler les contenus, nous allons utiliser les propriétés CSS
Justify-items et align-items.
Si nous voulons que les contenus débutent en haut de leur ligne de grille
horizontale, nous donnons a la propriété¢ align-items la valeur start. Le fait
d'utiliser la propriété align-items fera que la hauteur des contenus sera égale a la
hauteur de ce qu'ils contiennent. Concernant la hauteur entre les lignes de grille
horizontale, elles resteront a 100 pixels comme défini par la propriété grid-
template-rows. La propriété align-items est a placer au sein des propriétés du
conteneur.
#grille {

display: grid;

grid-template-columns: repeat(2,200px);

grid-template-rows: repeat(2,100px);

justify-content: center;

align-content: center;

align-items: start;

background-color: #fff;

width: 75%:;

height: 400px;

margin: auto;




90 Chapitre 5

Voici le résultat dans un navigateur :

8] 5 monsie < = = ®

= © & g Ll = £

QUATRE

Figure 5-15 : Align-items: start; sur les contenus

Si nous voulons que les contenus débutent en bas de leur ligne de grille
horizontale, nous donnons a la propriété align-items la valeur end. Le fait d'utiliser
la propriété align-items fera que la hauteur des contenus sera égale a la hauteur de
ce qu'ils contiennent. Concernant la hauteur entre les lignes de grille horizontale,
elles resteront a 100 pixels comme défini par la propriété grid-template-rows. La
propriété align-items est a placer au sein des propriétés du conteneur.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: end;
background-color: #fff;
width: 75%:;
height: 400px;
margin: auto;




Déplacement des contenus 91

Voici le résultat dans un navigateur :

8] 5 monsie x [+ v e

> O & |0 el = 2 [

QUATRE

Figure 5-16 : Align-items: end; sur les contenus

Si nous voulons que les contenus soient centrés a l'intérieur des lignes de grille
horizontale, nous donnons a la propriété align-items la valeur center.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: center;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

Voici le résultat dans un navigateur :

18] 5 vonsie x|+ v = @

= © & K Ll = £ G

o

Figure 5-17 : Align-items: center; sur les contenus



92 Chapitre 5

Et si nous voulons que les contenus occupent toute la hauteur qui leur est allouée
entre les lignes de grille horizontale, il suffit alors de donner la valeur stretch a la
propriété align-items. 11 est a préciser que cette valeur est la valeur par défaut.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: stretch;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;

Voici le résultat dans un navigateur :

8] 5 monsie x [+ v = ®

= © o g el = £

Figure 5-18 : Align-items: stretch; sur les contenus

Maintenant si nous voulons aligner les contenus le long des lignes de grille
verticale, nous devons alors utiliser la propriété justify-items. Elle prendra les
mémes valeurs que la propriété align-items.

Si nous voulons que les contenus débutent a gauche de leur ligne de grille verticale,
nous donnons a la propriété justify-items la valeur start. Le fait d'utiliser la
propriété justify-items fera que la largeur des contenus sera égale a la largeur de ce
qu'ils contiennent. Concernant la largeur entre les lignes de grille verticale, elle
restera a 200 pixels comme défini par la propriété grid-template-columns. La
propriété justify-items est a placer au sein des propriétés du conteneur.

#grille {
display: grid;




Déplacement des contenus 93

grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;

align-content: center;

align-items: stretch;

justify-items: start;

background-color: #fff;

width: 75%;

height: 400px;

margin: auto;

}

Voici le résultat dans un navigateur :

18] 5 vonsie x|+ v - @

= O & K * |k L2

UN

QUATRE

Figure 5-19 : Justify-items: start; sur les contenus

Si nous voulons que les contenus débutent a droite de leur ligne de grille verticale,
nous donnons a la propriété justify-items la valeur end. Le fait d'utiliser la
propriété justify-items fera que la largeur des contenus sera égale a la largeur de ce
qu'ils contiennent. Concernant la largeur entre les lignes de grille verticale, elle
restera a 200 pixels comme défini par la propriété grid-template-columns. La
propriété justify-items est a placer au sein des propriétés du conteneur.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: stretch;
justify-items: end;
background-color: #fff;




94

width: 75%;
height: 400px;
margin: auto;

}

Chapitre 5

Voici le résultat dans un navigateur :

8] 5 Monsie x|+ v - @

= O & g Ll = £ [

UN

QUATRE

Figure 5-20 : Justify-items: end; sur les contenus

1 nous voulons que les contenus soient centrés a l'intérieur des lignes de grille
S 1 I t t t 1'int des 1 d 11

verticale, nous donnons a la propriété justify-items la valeur center.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: stretch;
justify-items: center;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;




Déplacement des contenus 95

Voici le résultat dans un navigateur :

8] 5 monsie x|+ v = ©

= © @ g el = 2 [

Figure 5-21 : Justify-items: center; sur les contenus

Et si nous voulons que les contenus occupent toute la largeur qui leur est allouée
entre les lignes de grille verticale, il suffit alors de donner la valeur stretch a la
propriété justify-items. 11 est a préciser que cette valeur est la valeur par défaut.

#grille {
display: grid;
grid-template-columns: repeat(2,200px);
grid-template-rows: repeat(2,100px);
justify-content: center;
align-content: center;
align-items: stretch;
justify-items: stretch;
background-color: #fff;
width: 75%;
height: 400px;
margin: auto;




96 Chapitre 5

Voici le résultat dans un navigateur :

8] 5 monsie * = = @

> O & |0 *| *= £ =

QUATRE

Figure 5-22 : Justify-items: strecth; sur les contenus

5.5. Alignement d'un contenu

Nous allons maintenant voir comment aligner un contenu de maniere individuelle.
Pour cela nous allons utiliser des propriétés CSS qui seront cette fois a placer dans
les propriétés CSS de chaque contenu que nous voudrons manipuler.

En conservant exactement le méme code que précédemment, si nous voulons
centrer la boite numéro un entre ses lignes de grille verticales, nous allons alors
utiliser la propriété justify-self au sein des propriétés CSS de la boite numéro un.
Nous lui donnerons alors pour valeur center.

.un{

background-color: #6f0;
justify-self: center;

Voici le résultat dans un navigateur :

8] 5 monsie x [+ v

= O o K Ll = 4 [

Figure 5-23 : justify-self: center; pour la boite numéro 1



Déplacement des contenus 97

Si nous voulons que la boite numéro un débute sur sa ligne de grille verticale
gauche alors nous donnerons la valeur start a la propriété justify-self.

.un{
background-color: #6f0;
justify-self: start;

Voici le résultat dans un navigateur :

8] 5 Monsie x [
= & o} * = L I

Figure 5-24 : Justify-self: start; pour la boite numéro 1

Si nous voulons aligner la boite numéro un a droite, nous utiliserons alors la valeur
end que nous donnons a la propriété justify-self.

.un{

background-color: #6f0;
justify-self: end;

Voici le résultat dans un navigateur :

8] 5 Monsie x|+ v
> 0 & |0 k| = L@

Figure 5-25 : Justify-self: end; pour la boite numéro 1




98 Chapitre 5

Et enfin, la valeur par défaut pour la propriété justify-self est la valeur stretch. Elle
permet a la boite numéro un d'occuper toute la largeur qui lui est allouée.

.un{

background-color: #6f0;
justify-self: stretch;

Voici le résultat dans un navigateur :

8] 5 monsie x|+ v - @

> O & |0 bl = £ G

Figure 5-26 : Justify-self: stretch; pour la boite numéro 1

De la méme fagon, nous pouvons aligner la boite numéro un selon I'axe vertical.
Pour cela, nous avons a notre disposition la propriété align-self. Cette propriété
sera a placer dans les propriétés CSS du contenu que nous souhaiterons aligner.

En conservant exactement le méme code que précédemment, si nous voulons
centrer la boite numéro un entre ses lignes de grille horizontale, nous allons alors
utiliser la propriété align-self au sein des propriétés CSS de la boite numéro un.

Nous lui donnerons alors pour valeur center.

.un{
background-color: #6f0;
align-self: center;




Déplacement des contenus 99

Voici le résultat dans un navigateur :

8] 5 monsie x|+ v - @

= O @ K bl = 2

Figure 5-27 : Align-self: center; pour la boite numéro 1

Si nous voulons que la boite numéro un débute sur sa ligne de grille horizontale
haute alors nous donnerons la valeur start a la propriété align-self.

.un{
background-color: #6f0;
align-self: start;

Voici le résultat dans un navigateur :

8] 5 monsie « = @

= © @ g Ll = £

Figure 5-28 : Align-self: start; pour la boite numéro 1

Si nous voulons aligner la boite numéro un en bas, nous utiliserons alors la valeur
end que nous donnons a la propriété align-self.

.un{
background-color: #6f0;
align-self: end;




100 Chapitre 5

Voici le résultat dans un navigateur :

8] 5 monsie < = - @

> O & |0 Ll = 2

Figure 5-29 : Align-self: end; pour la boite numéro 1

Et enfin, la valeur par défaut pour la propriété align-self est la valeur stretch. Elle
permet a la boite numéro un d'occuper toute la hauteur qui lui est allouée.

.un{
background-color: #6f0;
align-self: stretch;

Voici le résultat dans un navigateur :

8] 5 monsie x|+ v - @

= © o g *| *= £ =

Figure 5-30 : Align-self: stretch; pour la boite numéro 1



Chapitre 6

Création d'une maquette d'un site responsive

6.1. Présentation du travail

Pour terminer cette premiere partie du livre, nous allons réaliser une maquette de
site internet responsive en utilisant la technologie grid. Nous allons travailler en
mobile first, c'est-a-dire pour les smartphones en priorité. Nous ne ferons que deux
types d'écran, un petit et un grand. Nous mettrons en place un point de rupture sur
les 900 pixels. Voici ci-dessous la maquette que nous allons réaliser ensemble.

Figure 6-1 : Présentation de la maquette que nous allons réaliser
Nous allons mettre en place différents contenus. Chaque contenu sera numéroté,

ainsi nous pourrons les retrouver sur les petits écrans et sur les grands écrans. En
sachant que la boite numéro 5 ne sera pas présente sur les petits écrans.

6.2. Mise en place des bases du travail

Nous allons déja commencer par mettre en place notre code HTML. Nous allons
déclarer une boite conteneur qui contiendra neuf boites.

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>Mon site</title>

<link rel="stylesheet" href="style.css" />




102 Chapitre 6

</head>

<body>

<div id="grille">
<div class="un">1</div>
<div class="deux">2</div>
<div class="trois">3</div>
<div class="quatre">4</div>
<div class="cing">5</div>
<div class="six">6</div>
<div class="sept">7</div>
<div class="huit">8</div>
<div class="neuf">9</div>

</div>

</body>

</html>

Le fait d'avoir définie une classe différente pour chacune de nos neuf boites va
nous permettre de leur donner une couleur de fond différente afin de mieux les
distinguer. Voici le code que nous allons écrire dans le fichier style.css

.un{

background-color: #d44bcd;
}
.deux {

background-color: #f16b08;
}
frois {

background-color: #b2f109;
}
.quatre {

background-color: #23f109;
}
.cing {

background-color: #3050f0;
}
.Six {

background-color: #fbb5e9;
}



Création d'une maquette d'un site responsive 103

.sept{

background-color: #0af1ad;
}
.huit {

background-color: #e8f571;
}
.neuf {

background-color: #31838f;
}

Voici le résultat obtenu dans un navigateur :

& 5 Monste <[+ v S

« > 0 6 o e

T

Figure 6-2 : Mise en place d'une couleur de fond pour les contenus

Afin de rendre nos boites un peu plus jolies et un peu plus visible, nous allons leur
définir une classe commune que nous appellerons flexbox et qui contiendra les
mémes propriétés CSS que nous avons déja utilisées dans ce chapitre.

Ajout de la classe flexbox a nos neuf boites de contenus.

<ldoctype htmi>

<html>

<head>

<meta charset="utf-8">

<title>Mon site</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="grille">
<div class="un flexbox">1</div>
<div class="deux flexbox">2</div>
<div class="trois flexbox">3</div>
<div class="quatre flexbox">4</div>
<div class="cing flexbox">5</div>
<div class="six flexbox">6</div>
<div class="sept flexbox">7</div>
<div class="huit flexbox">8</div>




104

<div class="neuf flexbox">9</div>
</div>
</body>
</html>

Chapitre 6

Voici le code CSS de la classe flexbox :

flexbox {
display: flex;
justify-content: center;
padding: 20pXx;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;

}

Voici le résultat obtenu dans un navigateur :

B 5|5 monste <[+ v
«c 5 0 4 o

9

Figure 6-3 : Ajout de la classe flexbox

Et pour terminer la premiere partie de notre exercice, nous allons simplement
définir la propriété display que nous placerons a grid pour le conteneur a qui nous

avons donné l'identifiant grille.

#grille {
display: grid;




Création d'une maquette d'un site responsive 105

6.3. CSS c6té smartphone

Nous avons dit que le site serait mobile first. Nous allons donc configurer notre
CSS par rapport aux écrans de téléphone portable. Voici ci-dessous le rappel de ce
que nous souhaitons mettre en place.

Figure 6-4 : Rappel du travail a mettre en place
Ce qui nous intéresse pour le moment est I'écran de gauche. On constate qu'il devra
étre divisé en deux colonnes. Pour étre plus précis, nous dirons que la premicre
ligne contiendra une boite qui va occuper les deux colonnes, la deuxieme et la
troisieme ligne également. Concernant la quatrieme ligne, elle contiendra deux
boites qui occuperont chacune deux colonnes. Il en va de méme pour la cinquieme
ligne. Et enfin la sixieme et derniére ligne contiendra une boite qui va occuper les

deux colonnes. Nous pouvons également constater que la boite numéro 5 ne sera
pas présente sur les écrans de téléphone portable.

Nous allons maintenant traduire tout cela en CSS. Afin de mettre en place des
colonnes, nous allons utiliser la propriété grid-template-columns au sein des
propriétés CSS du conteneur.
#grille {
display: grid;
grid-template-columns: repeat(2, 50%);




106 Chapitre 6

Voici le résultat dans un navigateur :

& &5 Monste <[+ v EE
= - 0 a B ¥ ok L B -
1 2
3 4
5 6
7 8

9

Figure 6-5 : Mise en place de 2 colonnes

Nous allons maintenant nommer toutes les zones a l'intérieur de notre feuille de
style en utilisant la propriété grid-area qui doit étre appliquée a chaque contenu.

.un{
background-color: #d44bcd;
grid-area: un;

}

.deux {
background-color: #f16b08;
grid-area: deux;

}

frois {
background-color: #b2f109;
grid-area: trois;

}

.quatre {
background-color: #23f109;
grid-area: quatre;

}

.cing {
background-color: #3050f0;
grid-area: cinq;

}

.Six {
background-color: #fbb5e9;
grid-area: six;

}



Création d'une maquette d'un site responsive 107

.sept{
background-color: #0af1ad;
grid-area: sept;

}

.huit {
background-color: #e8f571;
grid-area: huit;

}

.neuf {
background-color: #31838f;
grid-area: neuf;

}

Maintenant que nous avons donné un nom a l'ensemble de nos contenus, nous
allons pouvoir mettre en place la propriété grid-template-areas afin de les
positionner comme convenu sur nos deux colonnes.

Avant de faire cela, nous allons tout de suite cacher la boite numéro 5 car elle ne
doit pas apparaitre sur les écrans de smartphone. Nous effacerons la propriété grid-
area qui n'a pas lieu d'étre puisque cette boite ne sera pas a positionner.

.cing {
background-color: #3050f0;
visibility: hidden;

}

Nous pouvons a présent mettre en place la propriété grid-template-areas au sein de
notre conteneur.

#grille {
display: grid;
grid-template-columns: repeat(2, 50%);
grid-template-areas:
"un un"
"deux deux"
"trois trois"
"quatre six"
"sept huit"
"neuf neuf";




108 Chapitre 6

Voici le résultat obtenu dans un navigateur :

& |5 Monste x|+ v )

< - 0 a B x| = 2
1
2
3
4 6
7 8
9

Figure 6-6 : Mise en place du site coté mobile first

6.4. CSS coté ordinateur

Maintenant que la mise en page c6té écran de téléphone portable est faite, nous
allons mettre en place la mise en page coté écran d'ordinateur. La premiere chose a
faire est de définir le point de rupture qui déterminera la nouvelle mise en page.
Nous avions fixé ce point de rupture a 900 pixels.

@media screen and (min-width: 901 px) {

}

Cela signifie que deés que l'écran qui viendra visionner notre page web sera
strictement supérieur a 900 pixels alors la mise en page du site sera modifiée. Nous
allons a présent mettre en place cette modification.

La premicre chose a faire est de rendre visible la boite numéro 5 pour ce type
d'écran et de lui donner un nom en utilisant la propriété grid-area.

@media screen and (min-width: 901 px) {
.cinq {
grid-area: cingq;
visibility: visible;

}

Et ensuite, pour réaliser la mise en page, nous allons juste avoir besoin de récupérer
le conteneur et de lui appliquer une nouvelle mise en page au travers de ses
propriétés CSS. Nous modifierons alors le nombre de colonnes, le faisant passer de
2 a 5 colonnes. Nous leur donnerons une largeur de 20% chacune. Il ne nous
restera alors plus qu'a positionner nos différentes lignes et colonnes en utilisant la
propriété grid-template-areas.



Création d'une maquette d'un site responsive 109

@media screen and (min-width: 901 px) {

#grille {

grid-template-columns: repeat(5, 20%);

grid-template-areas:
"un un un un un"
"deux trois trois trois trois"
"deux quatre quatre quatre cinq"
"deux six six six cinq"
"sept sept sept huit huit"
"neuf neuf neuf neuf neuf";

}
.cinq {
visibility: visible;
}
}
Voici le résultat obtenu pour les écrans supérieurs a 900 pixels :
%-§I|E|Mon5|te X‘—i— i — =l x
s > B @ [Ne bl = L=
1
2 3
4 5
6
i 8
9

Figure 6-7 : Mise en page pour les écrans d'ordinateur



110 Chapitre 6

6.5. Conclusion

Il nous reste encore une derniere chose a faire si nous voulons que notre site
s'affiche correctement sur un smartphone, c'est de mettre en place un meta
viewport. Cela va nous permettre de pouvoir rectifier les informations fournies par
le constructeur. Par exemple, pour un certain smartphone, le constructeur va nous
annoncer une taille de 1280 pixels. Cependant les pixels annoncés par le
constructeur ne sont pas les pixels que nous utilisons en qualité de concepteur de
site internet. Il nous annonce 1280 pixels, mais en réalité la taille serait pour nous
de 480 pixels. Donc le meta viewport va nous permettre de pouvoir rectifier cette
différence. Voici le code HTML complet de I'exercice que nous venons de réaliser
ensemble.

<ldoctype htmi>

<html>

<head>

<meta charset="utf-8">

<title>Mon site</title>

<meta name="viewport" content="width=device-width, initial-scale=1" />

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="grille">
<div class="un flexbox">1</div>
<div class="deux flexbox">2</div>
<div class="trois flexbox">3</div>
<div class="quatre flexbox">4</div>
<div class="cing flexbox">5</div>
<div class="six flexbox">6</div>
<div class="sept flexbox">7</div>
<div class="huit flexbox">8</div>
<div class="neuf flexbox">9</div>

</div>

</body>

</html>

Et voici également le code CSS complet
#grille {
display: grid;
grid-template-columns: repeat(2, 50%);




Création d'une maquette d'un site responsive

grid-template-areas:
"un un"
"deux deux"
"trois trois"
"quatre six"
"sept huit"
"neuf neuf";
}
.un{
background-color: #d44bcd;
grid-area: un;
}
.deux {
background-color: #f16b08;
grid-area: deux;
}
rois {
background-color: #b2f109;
grid-area: trois;
}
.quatre {
background-color: #23f109;
grid-area: quatre;
}
.cinq{
background-color: #3050f0;
visibility: hidden;
}
.Six {
background-color: #fbb5e9;
grid-area: six;
}
.sept {
background-color: #0af1ad;
grid-area: sept;
}
.huit {

111




112
background-color: #e8f571;
grid-area: huit;
}
.neuf {
background-color: #31838f;
grid-area: neuf;
}
flexbox {
display: flex;
justify-content: center;
padding: 20px;
font-size: 30px;
font-weight: bold;
border: 1px solid #333;
}

@media screen and (min-width: 901 px) {

#grille {
grid-template-columns: repeat(5, 20%);
grid-template-areas:
"un un un un un"
"deux trois trois trois trois"
"deux quatre quatre quatre cing"
"deux six six six cing"
"sept sept sept huit huit"
"neuf neuf neuf neuf neuf";
}
.cinq {
grid-area: cing;
visibility: visible;

}

Chapitre 6




Partie 2

FLEXBOX






Chapitre 7

Le display flex

7.1. Mise en place de nos documents de base

Nous allons créer en HTML, une boite div a qui nous allons donner pour identifiant
conteneur. Cette boite va contenir différentes autres boites div. Nous allons en
créer trois. Voici ce que cela va nous donner.

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
</div>

Jusqu'ici rien de bien extraordinaire, nous venons simplement de déclarer des
balises génériques du HTML. Notre fichier HTML de base que nous pouvons
appeler index.html ressemble donc a ceci.

<ldoctype html>

<html>
<head>
<meta charset="utf-8" />
<title>Flexbox</title>
</head>
<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
</div>
</body>
</html>




116 Chapitre 7

En appelant notre fichier index.html dans un navigateur, nous obtenons le résultat

suivant.
€ > 0 @ 0] | = L B -

Contenu 1
Contenu 2
Contenu 3

Figure 7-1 : Résultat de l'appel du fichier index.html

Pourquoi un tel résultat ? Tout simplement parce que les balises div sont de type
bloc et font donc apparaitre les éléments les uns en dessous des autres. Il s'agit 1a
du comportement normal du CSS.

Afin de rendre tout cela un peu plus visuel, nous allons créer une feuille de style
externe que nous nommerons style.css. Nous allons relier cette feuille de style a
notre fichier HTML a l'aide du code suivant.

<link rel="stylesheet" href="style.css" />

Notre fichier HTML devient donc
<ldoctype html>

<html>
<head>
<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
</div>
</body>
</html>

Passons a présent a 1'édition de notre feuille de style. Nous allons donner un style a
nos différents contenus, en leur donnant une couleur de fond. Voici ce que cela va
donner.

.contenut {
background-color:#fof;



Le display flex 117

.contenu2 {
background-color:#ff3;

}

.contenu3 {
background-color:#C9F;

En relancant notre fichier index.html dans notre navigateur, nous allons obtenir
ceci

S ) () x| x L8 -

Contenu 1
Contenu 2
Contenu 3

Figure 7-2 : Résultat de l'index.html avec sa feuille de style

Le fait d'avoir appliqué un style pour afficher une couleur de fond & nos différents
contenus, montre bien visuellement le type bloc des balises div, puisque les
couleurs de fond s'étalent sur toute la largeur de 1'écran.

7.2. Déclarer du flex dans notre code CSS

Jusque la nous venons de voir que le comportement naturel d'une balise div est le
type bloc, et donc par conséquent a chaque fois que l'on crée une balise div, les
infos qui se trouvent a l'intérieur de cette balise commencent a la ligne. Flexbox va
venir totalement anéantir ce comportement pour imposer le sien. C'est ce que nous
allons voir maintenant. Lorsque 1'on souhaite donner un comportement flex a un ou
plusieurs contenus, nous le mentionnons alors dans le conteneur. Le conteneur
étant celui qui va contenir les différentes boites qui vont devenir flexibles. Pour
effectuer cela, il suffit de déclarer le style suivant a l'identifiant conteneur, dans
notre fichier style.css

#conteneur {
display: flex;

La conséquence est immédiate : le comportement naturel de type bloc des balises
div est remplacé par celui de flexbox.



118 Chapitre 7

Regardez la figure ci-dessous, elle montre le résultat de ce nouveau comportement.

> 0 @ o d = L E

Contenu 1Contenu 2Contenu 3

Figure 7-3 : Notre premier flexbox

Le fait d'avoir passé le conteneur en display:flex a rendu toutes les boites
contenues a l'intérieur du conteneur, flexibles. Et donc elles se sont positionnées les
unes a coté des autres. Leur type bloc a totalement disparu. Nous ne sommes donc
plus sur une notion de bloc ou de inline mais de flex.

7.3. Deux possibilités flex ou inline-flex

Précédemment nous avons défini la valeur flex a la propriété display. Si nous
avions défini la valeur inline-flex au lieu de la valeur flex, ceci n'aurait rien changé
pour les contenus. Ils se seraient positionnés les uns a coté des autres, exactement
comme précédemment.

#conteneur {
display: inline-flex;

Voici le résultat dans un navigateur :

> 0 @ o d = L E

Contenu 1Contenu 2Contenu 3

Figure 7-4 : Résultat d'une valeur inline-flex

Comme vous pouvez le constater, cela ne change strictement rien aux contenus. Ils
ont adopté un comportement flex. Alors pourquoi deux valeurs possibles pour la
propriété display 7 Cela va permettre a un conteneur vis-a-vis d'autres conteneurs,
d'étre flex (c'est-a-dire de type bloc) ou inline-flex (c'est-a-dire de type inline).
Cela signifie que nous pouvons définir autant de conteneurs qu'on le souhaite dans
une page. IIs se positionneront entre eux de maniere bloc ou inline, respectivement
flex ou inline-flex. Si par exemple, vous souhaitez placer deux conteneurs 1'un a
cOté de l'autre, alors vous leur donnerez la valeur inline-flex a leur propriété
display.

7.4. La largeur des contenus

Comme vous l'avez sans dofite remarqué, la largeur des contenus a été modifiée.
En fait la largeur des boites est liée a leur contenu. Ici, la premiere boite a pour
contenu contenu 1,la seconde boite a pour contenu contenu 2 et la troisieme boite
a pour contenu contenu 3. Si nous modifions le contenu d'une boite alors sa largeur



Le display flex 119

s'en retrouvera modifiée. Prenons tout de suite un exemple pour bien comprendre
ce principe. Nous allons modifier le contenu de la premiere boite en le remplacant
par le chiffre 1.

<ldoctype html>

<html>
<head>
<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>

<div id="conteneur">
<div class="contenu1">1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
</div>
</body>
</html>

Voici donc le résultat que nous obtenons :
= = © @ K9 *x o~ L B -

1Contenu 2Contenu 3

Figure 7-5 : La largeur d'une boite est liée a son contenu.

Comme vous pouvez le constater, la premiere boite est beaucoup moins large que
les deux boites suivantes puisque son contenu est uniquement le chiffre 1. Donc la
largeur de la boite est bien liée a son contenu.

7.5. Modifions le style par défaut

Afin de rendre visuellement plus jolies nos boites de contenu, nous allons modifier
leur style CSS en leur apportant la propriété padding. Voila a quoi va ressembler
notre fichier style.css

#conteneur {
display: flex;

}

.contenut {
background-color:#FFC;
padding: 20px;




120 Chapitre 7

}

.contenu2 {
background-color:#ff3;
padding: 20pXx;

}

.contenu3 {
background-color:#FCF;
padding: 20px;

}

Nous en profitons pour remettre le fichier index.html comme initialement.

<!doctype html>

<html>
<head>
<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
</div>
</body>
</html>

Voici le résultat que nous obtenons dans notre navigateur :
> 0 & 0 %

Contenu 1 Contenu 2 Contenu 3
Figure 7-6 : Les boites sont enrichies d'un padding

Comme nous l'avons constaté précédemment, nous voyons bien ici que la largeur
des boftes est bien liée a leur contenu, mais aussi aux styles qu'on leur applique. Ici
le padding qui permet de créer un espace entre le bord et son contenu, a permis
d'augmenter la largeur des boites.



Chapitre 8

La différence entre flex et inline-flex

8.1. La propriété display

Comme nous l'avons vu dans le chapitre précédent, les valeurs flex et inline-flex
données a la propriété display, sont liées uniquement au conteneur. Lorsque 1'on
donne la valeur flex a la propriété display d'un conteneur, ce conteneur sera de type
bloc vis-a-vis d'un autre conteneur. Lorsque 1'on donne la valeur inline-flex a la
propriété display d'un conteneur, ce conteneur sera de type inline vis-a-vis d'un
autre conteneur.

Nous allons reprendre notre fichier CSS précédent afin d'apporter une couleur de
fond au conteneur.

#conteneur {
display: flex;
background-color:#CCC;

}

.contenut {
background-color:#FFC;
padding: 20px;

}

.contenu?2 {
background-color:#ff3;
padding: 20px;

}

.contenu3 {
background-color:#FCF;
padding: 20px;

}

Observons le résultat dans notre navigateur, a I'appel du fichier index.html

S 2> O n o 2t [N

Contenu 1 Contenu 2 Contenu 3

Figure 8-1 : Background-color dans le conteneur



122 Chapitre 8

Ici nous pouvons confirmer que le conteneur qui a la propriété display de valeur
flex, a un comportement de type bloc puisque sa couleur de fond occupe toute la
largeur de 1'écran.

8.2. Plusieurs conteneurs flex

Ici nous allons voir qu'il est donc tout a fait possible d'avoir plusieurs conteneurs
sur une méme page web et que ces conteneurs se comporteront entre eux de fagon
bloc ou inline selon la valeur de leur propriété display. Pour cela nous allons créer
deux conteneurs dans notre fichier index.html

<ldoctype html>

<html>
<head>
<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>

<div id="conteneurA">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
</div>
<div id="conteneurB">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
</div>
</body>
</html>

Notre fichier HTML contient a présent deux conteneurs, le conteneur A et le
conteneur B. Ces deux conteneurs auront le méme contenu. A savoir les contenus
1,2et3.

Apportons a présent une modification au niveau de la feuille de style CSS en
déclarant un style pour le conteneur A et pour le conteneur B. Nous leur
donnerons a tous les deux, une valeur flex a leur propriété display. En revanche
nous leur donnerons une couleur de fond différente afin de bien les distinguer dans
notre navigateur web.



La différence entre flex et inline-flex

Voici notre feuille de style CSS.

123

#conteneurA {
display: flex;
background-color:#CCC;

}

#conteneurB {
display: flex;
background-color:#000;

}

.contenu1 {
background-color:#FFC;
padding: 20px;

}

.contenu2 {
background-color:#ff3;
padding: 20px;

}

.contenu3 {
background-color:#FCF;
padding: 20px;

}

Voila le résultat de ce code dans un navigateur :
Contenu 1 Contenu 2 Contenu 3

Figure 8-2 : Deux conteneurs flex

* kLo -

Nous voyons bien ici que ces deux conteneurs ont un comportement de type bloc,
puisque leur couleur de fond respective prend bien toute la largeur de l'écran,
obligeant ainsi le second conteneur a commencer a la ligne suivante.

Nous venons de démontrer que la valeur flex donnée a la propriété display d'un

conteneur le rendait de type bloc vis-a-vis des autres conteneurs.



124 Chapitre 8

8.3. Plusieurs conteneurs inline-flex

Reprenons notre fichier CSS et modifions la valeur de la propriété display de nos
deux conteneurs en choisissant cette fois la valeur inline-flex. Voila a quoi va a
présent ressembler notre fichier style.css

#conteneurA {
display: inline-flex;
background-color:#CCC;

}

#conteneurB {
display: inline-flex;
background-color:#000;

}

.contenut {
background-color:#FFC;
padding: 20px;

}

.contenu2 {
background-color:#ff3;
padding: 20px;

}

.contenu3 {
background-color:#FCF;
padding: 20px;

}

Nous ne touchons pas au fichier HTML que nous appelons dans notre navigateur.
Voici ce que nous obtenons a 1'écran :

> 0 @ (o k| kL@ -

Contenu 1 Contenu 2 Contenu 3 Contenu 1 Contenu 2 Contenu 3

Figure 8-3 : deux conteneurs inline-flex

Nous voyons bien ici que ces deux conteneurs ont un comportement de type inline,
puisque les voici a présent l'un a c6té de l'autre sur I'écran. Nous venons de
démontrer que la valeur inline-flex donnée a la propriété display d'un conteneur le

rendait de type inline vis-a-vis des autres conteneurs.



La différence entre flex et inline-flex 125

8.4. Conclusion de ce chapitre

Lorsque des conteneurs ont pour valeur flex a leur propriété display, ils sont alors
de type bloc les uns vis-a-vis des autres.

Lorsque des conteneurs ont pour valeur inline-flex a leur propriété display, ils sont
alors de type inline les uns vis-a-vis des autres.

Il est également important de se rappeler qu'a partir du moment ot un conteneur
est déclaré flex ou inline-flex, alors ses différents contenus seront des éléments
flexibles.






Chapitre 9

Définir la direction des contenus

9.1. Une propriété CSS liée a la direction

Nous avons vu que le fait d'avoir écrit un display:flex dans les styles du conteneur
avait placé automatiquement les différents contenus les uns a c6té des autres et non
plus les uns en dessous des autres comme ils I'€taient initialement. Nous allons a
présent modifier ce nouveau comportement en utilisant une nouvelle propriété qui
sera elle aussi placée dans les styles du conteneur. Cette nouvelle propriété va nous
permettre de pouvoir établir la direction dans laquelle vont se positionner les
différents contenus. Lorsque 1'on parle de direction, cela signifie que 1'on parle de
lignes et de colonnes. Nous allons donc pouvoir décider si nos contenus seront
alignés en ligne ou bien empilés en colonne. La propriété qui va étre utilisée pour
réaliser cela est la propriété flex-direction.

9.2. Diriger nos contenus en ligne

A partir du moment ol nous avons défini un comportement flex pour un conteneur,
alors ses contenus sont affichés en ligne. Cela signifie que la valeur par défaut de la
propriété flex-direction est une valeur qui place les contenus en ligne. Cette valeur
est row, qui signifie ligne en frangais. Voici comment elle se déclare.

‘flex-direction: row;

Reprenons notre fichier style.css en ne conservant qu'un seul conteneur a qui nous
allons appliquer la nouvelle propriété flex-direction

#conteneur {
background-color:#CCC;
display: flex;
flex-direction: row;

}

.contenu1 {
background-color:#FFC;
padding: 20px;

}

.contenu2 {

background-color:#ff3;
padding: 20px;




128 Chapitre 9

}

.contenu3 {
background-color:#FCF;
padding: 20pXx;

}

Voici notre fichier index.html

<ldoctype html>

<html>
<head>
<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
</div>
</body>
</html>

En appelant notre fichier index.html dans notre navigateur, voici ce que nous
obtenons a I'écran.

S 2> O n o 2t [N

Contenu 1 Contenu 2 Contenu 3

Figure 9-1 : Résultat de la propriété flex-direction ayant pour valeur row

Nos contenus sont alignés les uns a coté des autres exactement comme
précédemment. Il ne s'est strictement rien passé. Comme nous l'avons dit plus
haut, la valeur row est la valeur par défaut de la propriété flex-direction. Donc que
la propriété flex-direction soit déclarée avec valeur row ou bien qu'elle ne soit pas
déclarée, le résultat sera forcément le méme.

A partir du moment oll un conteneur a une propriété display:flex ou display:inline-
flex, ses contenus se postionneront en ligne et de gauche a droite.



Définir la direction des contenus 129

9.3. Diriger nos contenus en colonne

Nous avons dit plus haut que la propriété flex-direction nous permettait de diriger
nos contenus soit sur une ligne, soit sur une colonne. Voyons donc maintenant
comment diriger nos contenus en colonne. Pour cela il suffit simplement de donner
la valeur column a la propriété flex-direction, comme ceci.

flex-direction: column; ‘

Reprenons notre fichier style.css et modifions la valeur de la propriété flex-
direction du conteneur.

#conteneur {
background-color:#CCC;
display: flex;
flex-direction: column;

}

.contenut {
background-color:#FFC;
padding: 20px;

}

.contenu2 {
background-color:#ff3;
padding: 20px;

}

.contenu3 {
background-color:#FCF;
padding: 20px;

}

Cette fois nous avons demandé que nos contenus soient empilés en colonne.
Voyons voir le résultat de cette nouvelle feuille de style. Nous conservons le méme
fichier HTML que précédemment.

SORGE O il - L E

Contenu 1
Contenu 2

Contenu 3

Figure 9-2 : Résultat de la propriété flex-direction ayant pour valeur column



130 Chapitre 9

Nos contenus sont donc bien empilés en colonne et non alignés en ligne. En
revanche, cette fois, nous voyons que leur largeur ne dépend plus de leur contenu
comme le faisait I'alignement en ligne. Nous aurons l'occasion de reparler plus loin
dans ce livre de ce comportement.

9.4. Diriger nos contenus en ligne inversée

Nous venons de voir qu'il est possible de diriger nos contenus soit en ligne, soit en
colonne. Ici nous allons voir qu'il est également possible d'inverser la direction de
nos contenus lorsque ceux-ci sont alignés en ligne. Pour cela nous utilisons la
valeur row-reverse a la propriété flex-direction, comme ceci.

flex-direction: row-reverse; \

Reprenons notre fichier style.css et modifions la valeur de la propriété flex-
direction du conteneur.

#conteneur {
background-color:#CCC;
display: flex;
flex-direction: row-reverse;

}

.contenut {
background-color:#FFC;
padding: 20px;

}

.contenu?2 {
background-color:#ff3;
padding: 20px;

}

.contenu3 {
background-color:#FCF;
padding: 20pXx;

}

Cette fois nous venons de demander a notre conteneur d'afficher ses contenus en
ligne inversée. Voyons le résultat de cette demande dans notre navigateur en
appelant notre fichier index.html que nous ne modifions pas.



Définir la direction des contenus 131

Voici ce que nous renvoi notre navigateur :

>0 a [o x| kL& -
Contenu 3 Contenu 2 Contenu 1

Figure 9-3 : Résultat de la propriété flex-direction ayant pour valeur row-reverse

Ici nous pouvons observer que nos contenus sont bien affichés en ligne, grace a la
valeur row, mais qu'ils sont affichés de fagcon inversée, grace a la valeur reverse.
Donc en donnant la valeur row-reverse a la propriété flex-direction d'un conteneur,
ses contenus s'afficheront les uns a c6té des autres mais de fagon inversée. Le début
se retrouvera a droite de 1'écran et non plus a gauche. Cela signifie que sans toucher
au fichier HTML, nous pouvons inverser tres facilement la direction des contenus.

9.5. Diriger nos contenus en colonne inversée

Précédemment nous avons vu qu'il était possible d'inverser la direction des
contenus lorsque ceux-ci étaient en ligne. Maintenant nous allons voir qu'il est
également possible d'inverser les contenus lorsque ceux-ci sont empilés en colonne.
Et cela va se faire grace a la valeur column-reverse de la propriété flex-direction.
Comme ceci.

flex-direction: column-reverse; \

Reprenons notre fichier style.css et modifions la valeur de la propriété flex-
direction du conteneur.

#conteneur {
background-color:#CCC;
display: flex;
flex-direction: column-reverse;

}

.contenut {
background-color:#FFC;
padding: 20px;

}

.contenu?2 {
background-color:#ff3;
padding: 20px;

}

.contenu3 {
background-color:#FCF;



132 Chapitre 9

padding: 20px;
}

Cette fois nous venons de demander a notre conteneur d'afficher ses contenus en
colonne inversée. Voyons le résultat de cette demande dans notre navigateur en
appelant notre fichier index.html que nous ne modifions pas.

SRR © il oo (A oo

Contenu 3
Contenu 2

Contenu 1

Figure 9-4 : Résultat de la propriété flex-direction ayant pour valeur column-reverse

Ici nous pouvons observer que nos contenus sont bien affichés en colonne, grice a
la valeur column, mais qu'ils sont affichés de fagcon inversée, grice a la valeur
reverse. Donc en donnant la valeur column-reverse a la propriété flex-direction
d'un conteneur, ses contenus s'afficheront les uns au-dessus des autres mais de
facon inversée. Le début se retrouvera en bas du conteneur et non plus en haut.
Cela signifie que sans toucher au fichier HTML, nous pouvons inverser tres
facilement la direction des contenus.

9.6. Conclusion

Une fois que l'on a défini un conteneur en display:flex (ou display:inline-flex)
alors on accede a la propriété flex-direction qui nous permet de pouvoir donner une
direction a nos contenus. Et cela sans jamais modifier notre code HTML.



Chapitre 10

Le retour a la ligne

10.1. Une propriété CSS liée au retour a la ligne

Nous venons de voir qu'il est possible de définir la direction des contenus. Ici nous
allons voir qu'il est également possible de définir un retour ou non a la ligne des
différents contenus et cela grice a une nouvelle propriété CSS liée a flexbox. La
propriété qui va étre utilisée pour réaliser cela est la propriété flex-wrap.

La valeur par défaut de cette propriété CSS est la valeur nowrap qui signifie que
les contenus ne doivent pas revenir a la ligne. Par conséquent, en définissant un
conteneur de type flex, alors par défaut tous ses contenus seront affichés les uns a
la suite des autres sans jamais revenir a la ligne.

10.2. Empécher le retour a la ligne des contenus

Nous avons vu qu'a partir du moment ol nous avons défini un comportement flex
pour un conteneur alors ses contenus sont affichés en ligne. Ce qu'il faut
également savoir, si la largeur totale des contenus dépasse la largeur du conteneur,
les contenus ne reviendront pas a la ligne et continueront a s'afficher les uns a coté
des autres quitte a sortir du conteneur. Ceci démontre un comportement par défaut
de flexbox, empécher le retour a la ligne des contenus. Tout ceci est régi par la
propriété CSS qui se nomme flex-wrap. Sa valeur par défaut est nowrap, qui
signifie ne pas revenir a la ligne. Voici comment elle se déclare.

\flex-wrap: nowrap;

Reprenons notre fichier style.css a qui nous allons appliquer la nouvelle propriété
Sflex-wrap. Nous n'appliquerons pas la propriété flex-direction car nous souhaitons
afficher nos contenus en ligne, les uns a c6té des autres. Et c'est précisément la
valeur par défaut de cette propriété, comme nous l'avons vu plus haut.

#conteneur {
background-color:#CCC;
display: flex;
flex-wrap: nowrap;

}

.contenu1 {
background-color:#FFC;
padding: 20px;




Chapitre 10

134

.contenu2 {
background-color:#ff3;
padding: 20pXx;

}

.contenu3 {
background-color:#FCF;
padding: 20pXx;

}

Apportons une modification a notre fichier HTML en lui ajoutant de nouveaux
contenus. Pour cela nous allons copier et coller les trois contenus, puis nous
renommerons nos nouveaux contenus en contenu 4, contenu 5 et contenu 6.

Voici notre fichier index.html
<!doctype html>

<html>
<head>
<meta charset="utf-8" />
<title>Flexbox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
<div class="contenu1">Contenu 4</div>
<div class="contenu2">Contenu 5</div>
<div class="contenu3">Contenu 6</div>
</div>
</body>
</html>




Le retour a la ligne

Affichons maintenant le résultat de nos fichiers, dans notre navigateur :

s = O & g

Contenu Contenu
1 2

<

Figure 10-1 : Résultat de la propriété flex-wrap ayant pour valeur nowrap

Contenu
3

ud =

Contenu
4

T

Conteny
S

>

135

Nous pouvons observer que les contenus ne reviennent pas a la ligne. Un scroll en
bas du navigateur s'est affiché pour pouvoir faire défiler tous les contenus. Nous
rappelons que ce comportement est un comportement par défaut. Donc que 1'on
écrive flex-wrap:nowrap dans le style CSS du conteneur ou non, le comportement

des contenus sera celui-ci.

10.3. Autoriser le retour a la ligne des contenus

I existe une valeur a donner a la propriété flex-wrap pour pouvoir autoriser un
retour a la ligne des contenus lorsque ceux-ci n'ont plus de place pour s'afficher les
uns a coté des autres. Cette valeur est wrap. Elle s'applique ainsi.

flex-wrap: wrap;

Nous allons appliquer cette nouvelle valeur a la propriété flex-wrap de notre

conteneur.

#conteneur {
background-color:#CCC;
display: flex;
flex-wrap: wrap;

}

.contenut {
background-color:#FFC;
padding: 20px;

}

.contenu2 {
background-color:#ff3;
padding: 20px;

}

.contenu3 {




136 Chapitre 10

background-color:#FCF;
padding: 20px;

}
Nous ne touchons pas au fichier index.html que nous appelons a présent dans notre
navigateur :
€ >0 a o x| = LB -
Contenu 1 Contenu 2 Contenu 3 Contenu 4
Contenu 5 Contenu 6

Figure 10-2 : Résultat de la propriété flex-wrap ayant pour valeur wrap

Nous pouvons observer que nos contenus reviennent automatiquement a la ligne
des qu'ils n'ont plus la place pour pouvoir continuer de s'afficher les uns a c6té des
autres. Et cela grice a la valeur wrap donnée a la propriété flex-wrap.

10.4. Autoriser le retour a la ligne inversé des contenus

Il existe une troisieme valeur que l'on peut donner a la propriété flex-wrap, la
valeur wrap-reverse. Cette valeur permet comme la valeur wrap, un retour a la
ligne des contenus lorsque ceux-ci n'ont plus la place de pouvoir s'afficher les uns a
cOté des autres. La seule différence est qu'elle va les afficher de fagcon inversée.
Voyons tout de suite cela en modifiant la valeur de la propriété flex-wrap du
conteneur dans notre fichier style.css

#conteneur {
background-color:#CCC;
display: flex;
flex-wrap: wrap-reverse;

}

.contenut {
background-color:#FFC;
padding: 20px;

}

.contenu2 {

background-color:#ff3;
padding: 20px;




Le retour a la ligne 137

}
.contenu3 {
background-color:#FCF;
padding: 20px;
}
Observons le résultat de cette modification dans notre navigateur.
£ >0 a 0 % [BEERA R
Contenu 5 Contenu 6
Contenu 1 Contenu 2 Contenu 3 Contenu 4

Figure 10-3 : Résultat de la propriété flex-wrap ayant pour valeur wrap-reverse

Nos contenus reviennent bien a la ligne mais cette fois en s'inversant.

10.5. Une propriété réunissant deux propriétés

11 est possible de pouvoir réunir les propriétés flex-direction et flex-wrap en une
seule propriété. Cette propriété se nomme flex-flow. Elle prend pour valeur la
valeur donnée a flex-direction puis celle donnée a flex-wrap. Par exemple, si nous
voulons un alignement en ligne des contenus et autoriser un retour a la ligne, nous
pouvons alors écrire ceci

‘flex-flow: row wrap;

10.6. Conclusion

Nous venons de découvrir une nouvelle propriété, la propriété flex-wrap qui
permet le retour ou non a la ligne des contenus. Nous rappelons que par défaut,
cette propriété n'autorise pas le retour a la ligne des contenus.






Chapitre 11

L'axe principal et I'axe secondaire

11.1. La notion d'axe

Nous avons vu précédemment que nous pouvons définir un alignement des
contenus en ligne ou bien en colonne. Pour cela nous pouvons utiliser la propriété
[flex-direction. Si nous voulons un alignement des contenus en ligne alors nous
donnons la valeur row et si nous voulons un alignement en colonne alors nous
donnons la valeur column. Nous pouvons ajouter la valeur reverse dans le cas ou
nous souhaitons inverser 1'ordre des contenus.

En clair, nous avons deux possibilités d'alignement, soit un alignement en ligne,
c'est-a-dire suivant un axe horizontal, soit un alignement en colonne c'est-a-dire
suivant un axe vertical. Cela va nous amener a une notion importante de flexbox, la
notion d'axe principal et d'axe secondaire.

principal
secondaire
flex-direction: row; flex-direction: column;
flex-direction: row-reverse; flex-direction: column-reverse;

Axe principal I Axe secondaire

©
2
£
p
=
@
<

Axe secondaire

Figure 11-1 : Axe principal et axe secondaire

Lorsque nous définissons une direction en ligne (ou en ligne inversée), alors les
contenus sont affichés en ligne. Cette direction est alors définie comme étant 1'axe
principal. De ce fait, tout ce qui sera affiché verticalement sera aligné suivant 'axe
secondaire.

Dans le sens inverse, lorsque nous définissons une direction en colonne (ou en
colonne inversée), alors les contenus sont affichés en colonne. Cette direction est
alors définie comme étant l'axe principal. De ce fait, tout ce qui sera affiché
horizontalement sera aligné suivant l'axe secondaire.



140 Chapitre 11

11.2. Alignement sur I'axe principal

Maintenant que nous avons vu ce que sont 1'axe principal et 1'axe secondaire, nous
allons alors pouvoir aborder une nouvelle propriété flex qui va nous permettre de
positionner nos contenus suivant ces axes.

Nous allons créer au niveau HTML, un conteneur qui va posséder trois boites div.

<ldoctype html>

<html>

<head>

<meta charset="utf-8">

<title>FlexBox</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>

</body>

</html>

Au niveau de notre fichier style.css, nous allons définir une direction des contenus
en ligne au niveau du conteneur et nous allons donner une couleur de fond a
chacun des contenus ainsi qu'a notre conteneur.

#conteneur {
display: flex;
flex-direction: row;
background-color: #ccc;
}
.contenut {
background-color: #9f;
padding: 20pXx;
}
.contenu2 {
background-color: #ff3;
padding: 20px;




L'axe principal et I'axe secondaire 141

.contenu3 {
background-color: #366;
padding: 20pXx;

Voici le résultat dans un navigateur :
E B Flexox X
= = O ® ] * x L e

Figure 11-2 : Alignement des contenus suivant l'axe horizontal

11.3. Alignement horizontal

Le fait que nous soyons en flex-direction: row, 1'axe principal est 1'axe horizontal.
Nous rappelons que la valeur row de la propriété flex-direction est la valeur par
défaut. Cela signifie que l'axe principal par défaut est alors 1'axe horizontal. Nous
allons maintenant pouvoir positionner nos éléments suivant cet axe principal grace
a une propriété flex qui se nomme justify-content. La propriété justify-content a
plusieurs valeurs. Sa valeur par défaut est la valeur flex-start. Elle permet de
demander aux contenus de débuter a gauche du conteneur.

#conteneur {
display: flex;
flex-direction: row;
justify-content: flex-start;
background-color: #ccc;

Le résultat sera identique au résultat précédent puisque la valeur flex-start est la
valeur par défaut.

B FlexBox X

e = O & K bl - A =

Figure 11-3 : On donne la valeur flex-start a la propriété justify-content

Maintenant si nous souhaitons que les contenus débutent a droite de leur conteneur
alors nous devons donner la valeur flex-end a la propriété justify-content.



Chapitre 11

142
#conteneur {
display: flex;
flex-direction: row;
justify-content: flex-end;
background-color: #ccc;
}
Voici le résultat dans un navigateur :
_ B FlexBox X

Ll = 4 =@

Figure 11-4 : On donne la valeur flex-end a la propriété justify-content

e =2 © @& [N

Si nous souhaitons centrer les contenus suivant I'axe horizontal alors nous donnons
la valeur center a la propriété justify-content.

#conteneur {
display: flex;
flex-direction: row;
justify-content: center;
background-color: #ccc;

Voici le résultat dans un navigateur :
- B Flexgox >3

e =2 O ® 0]

Figure 11-5 : On donne la valeur center a la propriété justify-content

Si nous donnons la valeur space-between a la propriété justify-content alors la
premiere boite sera calée a gauche de son conteneur et la derniere boite sera calée a
droite de son conteneur. Quant aux autres boites, elles seront espacées par une

valeur constante.

#conteneur {
display: flex;
flex-direction: row;
justify-content: space-between;




L'axe principal et I'axe secondaire 143

background-color: #ccc;

}

Voici le résultat dans un navigateur :
B Flexgox pd
= =2 O W 0] * = L @

Figure 11-6 : On donne la valeur space-between a la propriété justify-content

Et enfin, si nous donnons la valeur space-around a la propriété justify-content,
alors nos différents contenus seront espacés d'une mé€me valeur et le contenu le
plus a gauche sera espacé de la moitié de cette valeur d'espacement avec le bord
gauche de son conteneur. Il en va de méme pour le contenu le plus a droite.

#conteneur {
display: flex;
flex-direction: row;
justify-content: space-around;
background-color: #ccc;

Voici le résultat dans un navigateur :
E B Flexgox 52
= = O & ® » =L e

Figure 11-7 : On donne la valeur space-around a la propriété justify-content

11.4. Alignement vertical

Si nous voulons que nos contenus soient alignés verticalement alors nous devons
définir la valeur column a la propriété flex-direction.
Nous conservons le méme code HTML que précédemment.

<ldoctype html>

<html>

<head>

<meta charset="utf-8">
<title>FlexBox</title>

<link rel="stylesheet" href="style.css" />




144 Chapitre 11

</head>

<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>

</body>

</html>

Quant au fichier CSS, nous demandons juste a positionner nos contenus
verticalement.

#conteneur {
display: flex;
flex-direction: column;
background-color: #ccc;

}

.contenut {
background-color: #f9f;
padding: 20px;

}

.contenu?2 {
background-color: #ff3;
padding: 20px;

}

.contenu3 {

background-color: #366;
padding: 20px;




L'axe principal et I'axe secondaire 145

Voici le résultat dans un navigateur :

RS 5 e R T R
« > 0 a |o 0k = oL oe
Contenu 2

Figure 11-8 : Alignement des contenus verticalement

La conséquence de ce code est que les contenus se retrouvent empilés les uns sur
les autres et qu'ils occupent toute la largeur de leur conteneur. Une autre
conséquence est que 1'axe principal est devenu I'axe vertical. Et donc par défaut les
contenus sont alignés suivant cet axe vertical. Afin de mieux apprécier cet
alignement, nous allons donner une hauteur a notre conteneur.

#conteneur {
display: flex;
flex-direction: column;
background-color: #ccc;

height: 300px;
}
Voici le résultat dans un navigateur :
R = reoex ~ N R e R
¢« > 0 a [o ox| * 2 oe
Contenu 2

Figure 11-9 : On donne une hauteur au conteneur



146 Chapitre 11

Grace au fait que l'axe principal soit maintenant I'axe vertical, alors la propriété
Jjustify-content va aligner les contenus suivant cet axe vertical. Nous avons dit
précédemment que la valeur par défaut de la propriété justify-content est la valeur
flex-start. Ici cette valeur fera débuter les contenus suivant le bord haut de leur
conteneur.

#conteneur {
display: flex;
flex-direction: column;
justify-content: flex-start;
background-color: #ccc;
height: 300px;

}

Voici le résultat dans un navigateur :

B FlexBox X
® & B e

<« > 0 & |0 i ) * | kL & -

Contenu 2

Figure 11-10 : On donne la valeur flex-start a la propriété justify-content

Le résultat est identique au résultat de la figure 11-9, puisque la valeur flex-start est
la valeur par défaut de la propriété justify-content.

Si nous reprenons la valeur flex-end que nous avons vu précédemment et que nous
la donnons a la propriété justify-content alors les contenus débuteront sur le bord
bas de leur conteneur.

#conteneur {
display: flex;
flex-direction: column;
justify-content: flex-end;
background-color: #ccc;




L'axe principal et I'axe secondaire

height: 300px;

147

Voici le résultat dans un navigateur :
B O e < R T e
« >0 a |o 0kl ox o2 ow

Contenu 2

Figure 11-11 : On donne la valeur flex-end a la propriété justify-content

De la méme fagon, si nous voulons centrer les contenus suivant leur axe principal
qui est 'axe vertical, alors nous donnons la valeur center a la propriété justify-

content.

#conteneur {
display: flex;
flex-direction: column;
justify-content: center;
background-color: #ccc;
height: 300px;




148 Chapitre 11

Voici le résultat dans un navigateur :

S ]

& =2 © & K iRl = 2 B =

Contenu 2

Figure 11-12 : On donne la valeur center a la propriété justify-content

Si nous donnons la valeur space-between a la propriété justify-content alors la
premiere boite sera calée en haut de son conteneur et la derni¢re boite sera calée en
bas de son conteneur. Quant aux autres boites, elles seront espacées par une valeur
constante.
#conteneur {
display: flex;
flex-direction: column;
justify-content: space-between;
background-color: #ccc;
height: 300px;




L'axe principal et I'axe secondaire 149

Voici le résultat dans un navigateur :

e~ e
£ >0 e o L S~ B

Contenu 2

Figure 11-13 : On donne la valeur space-between a la propriété justify-content

Et enfin, si nous donnons la valeur space-around a la propriété justify-content,
alors nos différents contenus seront espacés d'une méme valeur et le contenu le
plus haut sera espacé de la moitié de cette valeur d'espacement avec le bord haut de
son conteneur. Il en va de méme pour le contenu le plus bas.

#conteneur {
display: flex;
flex-direction: column;
justify-content: space-around;
background-color: #ccc;
height: 300px;




150 Chapitre 11

Voici le résultat dans un navigateur :

LTSS - s

« > 0 & |o *| = 2 e
Contenu 2

\
Figure 11-14 : On donne la valeur space-around a la propriété justify-content

11.5. Récapitulatif de ce que nous savons

Nous savons qu'il existe avec la technologie flexbox, un axe principal et un axe
secondaire. Ces deux axes sont définis par la propriété flex-direction. Si la
propriété flex-direction a pour valeur row, alors l'axe principal sera l'axe
horizontal. Il est & préciser que la valeur row est la valeur par défaut. Cela signifie
que si la propriété flex-direction n'est pas déclarée, alors 1'axe principal sera l'axe
horizontal.

principal
secondaire
justify-content
flex-start
flex-end
center Axe principal

space-between
space-around

2
©
=}
o
o
O
(1]
(7]
-

Figure 11-15 : L'axe principal est l'axe horizontal



L'axe principal et I'axe secondaire 151

Si la propriété flex-direction a pour valeur column, alors 'axe principal sera 'axe
vertical. Le fait d'avoir défini un axe principal nous permet de pouvoir aligner les
contenus le long de cet axe, grace a la propriété justify-content.

principal
secondaire
align-items
flex-start
flex-end
center @ Axe principal
stretch ‘=
=}
=
3
@
(]
k-,

Figure 11-16 : L'axe secondaire est l'axe vertical

Le fait d'avoir défini un axe secondaire nous permet de pouvoir aligner les
contenus le long de cet axe, grace a la propriété align-items. C'est ce que nous
allons voir a présent.

11.6. Alignement sur I'axe secondaire

Nous allons reprendre le méme code HTML que précédemment.

<ldoctype htmi>

<html>

<head>

<meta charset="utf-8">

<title>FlexBox</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>




152 Chapitre 11

</div>
</body>
</html>

Au niveau CSS, nous allons centrer les contenus le long de leur axe principal et
donner la valeur row a la propriété flex-direction
#conteneur {

display: flex;

flex-direction: row;

justify-content: center;

background-color: #ccc;

height: 200px;

}

.contenu1 {
background-color: #9f;
padding: 20px;
}
.contenu?2 {
background-color: #ff3;
padding: 20px;
}
.contenu3 {
background-color: #366;
padding: 20px;

}

Voici le résultat obtenu dans un navigateur :
I = rece ~ R R TR

« >0 a |o 0k E oL@

I ) I

Figure 11-17 : Alignement centré des contenus le long de l'axe principal




L'axe principal et I'axe secondaire 153

Concernant la hauteur des contenus, nous pouvons constater que celle-ci prend
toute la hauteur disponible. Dans notre code CSS, nous avons donné une hauteur a
notre conteneur. Nous lui avons donné une hauteur de 300 pixels. Et bien par
défaut, les contenus occupent toute cette hauteur. Cette hauteur définie I'axe
secondaire.

Précédemment nous avons vu qu'il existe une propriété CSS qui nous permet de
positionner les contenus le long de leur axe secondaire. Cette propriété se nomme
align-items. Nous pouvons donc déja conclure que sa valeur par défaut permet aux
contenus d'occuper tout 1'espace disponible de l'axe secondaire. Cette valeur porte
le nom de stretch. Ajoutons cette nouvelle propriété au code CSS de notre
conteneur.

#conteneur {
display: flex;
flex-direction: row;
justify-content: center;
align-items: stretch;
background-color: #ccc;
height: 300px;

Nous constatons que le résultat obtenu reste inchangé :

= =2 L & K9 L = 4 =

Contenu 2

Figure 11-18 : On donne la valeur stretch a la propriété align-items

Une autre valeur que nous pouvons donner a la propriété align-items est la valeur
Sflex-start. Nous avons déja étudié cette valeur avec la propriété justify-content.
Elle va nous donner exactement le méme résultat mais cette fois le long de 1'axe
secondaire. Le fait de ne plus avoir la valeur par défaut stretch fera que les
contenus auront pour hauteur ce qu'ils contiennent.

#conteneur {
display: flex;
flex-direction: row;



154 Chapitre 11

justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

Voici le résultat obtenu dans un navigateur :
B & 5 rlecox - T
<« > 0 a |o * = L@
Contenu 1 Contenu 2 Contenu 3

Figure 11-19 : On donne la valeur flex-start a la propriété align-items

La valeur flex-start nous permet de faire débuter les contenus en haut de l'axe
secondaire qui ici est I'axe vertical. Si nous voulons faire débuter les contenus en
bas de I'axe secondaire, nous allons alors utiliser la propriété flex-end.

#conteneur {
display: flex;
flex-direction: row;
justify-content: center;
align-items: flex-end;
background-color: #ccc;
height: 200px;




L'axe principal et I'axe secondaire 155

Voici le résultat obtenu dans un navigateur :

- B Flexgox X

= = © @ Ko D | = £ »

Figure 11-20 : On donne la valeur flex-end a la propriété align-items

Si nous voulons centrer nos contenus le long de leur axe secondaire, il nous suffit
simplement de donner la valeur center a la propriété align-items.

#conteneur {
display: flex;
flex-direction: row;
justify-content: center;
align-items: center;
background-color: #ccc;
height: 200px;

Voici le résultat obtenu dans un navigateur :
- B Flexgox X
¢« > 0 a [o 0k koL ow

Figure 11-21 : On donne la valeur center a la propriété align-items




156 Chapitre 11

11.7. Inversion de I'axe principal

Nous conservons le méme code HTML que précédemment.

<ldoctype html>

<html>

<head>

<meta charset="utf-8">

<title>FlexBox</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>

</body>

</html>

Concernant le code CSS, nous allons modifier la valeur de la propriété flex-
direction en lui donnant la valeur column, de facon a modifier 1'axe principal.
Ainsi l'axe vertical deviendra l'axe principal et l'axe horizontal deviendra l'axe
secondaire. Nous demanderons a centrer les contenus suivant leur axe principal.

#conteneur {
display: flex;
flex-direction: column;
justify-content: center;
background-color: #ccc;
height: 200px;
}
.contenut {
background-color: #f9f;
padding: 20px;
}
.contenu2 {
background-color: #ff3;
padding: 20px;




L'axe principal et I'axe secondaire 157

.contenu3 {
background-color: #366;
padding: 20px;

Voici le résultat obtenu dans un navigateur :

CEEE N - e

e = O & l¢ m % = 1 &
Contenu 2

Figure 11-22 : On donne la valeur center a la propriété justify-content

Les contenus se retrouvent bien centrés par rapport a l'axe principal qui est 'axe
vertical, et ils ont un comportement de type stretch suivant I'axe secondaire qui est
l'axe horizontal. La valeur strefch étant la valeur par défaut de la propriété align-
items.

#conteneur {
display: flex;
flex-direction: column;
justify-content: center;
align-item: stretch;
background-color: #ccc;
height: 200px;




158 Chapitre 11

Le résultat obtenu sera équivalent au résultat précédemment obtenu :

N e

E 2 O @& o ) ) S Jx‘: = (L (@

Contenu 2

Figure 11-23 : On donne la valeur stretch a la propriété align-items

En donnant la valeur flex-start a la propriété align-items, les contenus vont se
retrouver calés a gauche de leur axe secondaire et par la-méme ils perdront leur
valeur stretch et donc ils auront pour largeur ce qu'ils possédent.

#conteneur {
display: flex;
flex-direction: column;
justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

Voici le résultat obtenu dans un navigateur

e

¢« > 0 a |o Ox| x oL@

Contenu 2

Figure 11-24 : On donne la valeur flex-start a la propriété align-items

Et pour caler les contenus a la fin de 1'axe secondaire qui est 'axe horizontal, nous
donnons la valeur flex-end a la propriété align-items.



L'axe principal et I'axe secondaire

159

#conteneur {
display: flex;
flex-direction: column;
justify-content: center;
align-items: flex-end;
background-color: #ccc;
height: 200px;

Voici le résultat obtenu dans un navigateur
m B Flexgox X
& =2 O ® @ * ¥ L e
Contenu 2

Figure 11-25 : On donne la valeur flex-end a la propriété align-items

Si nous voulons centrer les contenus selon leur axe secondaire, il nous suffit de

donner la valeur center a la propriété align-items.

#conteneur {
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
background-color: #ccc;
height: 200px;




160 Chapitre 11

Voici le résultat obtenu dans un navigateur :

BNE]| O rersox - S
PSR N x| 0k 2 e
Contenu 1
Contenu 2
Contenu 3

Figure 11-26 : On donne la valeur center a la propriété align-items

11.8. Alignement d'un contenu particulier

Reprenons le méme code HTML que précédemment.

<ldoctype html>

<html>

<head>

<meta charset="utf-8">

<title>FlexBox</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>

</body>

</html>

Au niveau CSS, nous reprenons la aussi le méme code que précédemment et nous
donnons la valeur flex-start a la propriété align-items qui gere 'alignement de 'axe
secondaire. L'axe secondaire étant ici I'axe horizontal.

#conteneur {
display: flex;
flex-direction: column;



L'axe principal et I'axe secondaire 161

justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;
}
.contenut {
background-color: #f9f;
padding: 20px;
}
.contenu2 {
background-color: #ff3;
padding: 20px;
}
.contenu3 {
background-color: #366;
padding: 20px;
}
Voici le résultat de ce code dans un navigateur :
B <& |3 Flexgox X v - o X
‘»if i— O @ o} | - * = L =
Contenu 1
Contenu 2
Contenu 3

Figure 11-27 : Les contenus sont calés au début de l'axe secondaire

Nous allons & présent voir comment modifier l'alignement d'un contenu en
particulier, sans toucher a l'alignement des autres contenus. Par exemple, nous
allons demander au contenu 2 de s'afficher a la fin de 1'axe secondaire, pendant que
les contenus 1 et 3 restent alignés au début de I'axe secondaire. Pour cela nous
avons a notre disposition la propriété align-self. Cette propriété n'est pas a placer
dans les propriétés CSS du conteneur, mais dans les propriétés CSS du contenu que
I'on souhaite déplacer. Ici nous avons dit que nous souhaitons déplacer le contenu
2, alors c'est a lui que nous allons donner la propriété align-self. Et comme nous
souhaitons que ce contenu se retrouve a la fin de I'axe secondaire, alors nous lui



162 Chapitre 11

donnons la valeur flex-end.

#conteneur {
display: flex;
flex-direction: column;
justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}

.contenut {
background-color: #9f;
padding: 20px;

}

.contenu2 {
background-color: #ff3;
padding: 20px;
align-self: flex-end;

}

.contenu3 {
background-color: #366;
padding: 20px;

}

Voici le résultat de ce code dans un navigateur :

PR e

= = © @ | *| %= £ B -

Contenu 2
Figure 11-28 : Le contenu 2 est calé a la fin de l'axe secondaire

Ce qu'il faut savoir sur cette propriété align-self, c'est qu'elle prend les m&mes
valeurs que celles que nous pouvons donner a la propriété align-items. A savoir, la
valeur flex-start, la valeur flex-end, la valeur center ainsi que la valeur stretch.



L'axe principal et I'axe secondaire 163

11 est important également de savoir que la propriété align-self est prioritaire sur la
propriété align-items. Cela signifie que par défaut I'ensemble des contenus vont
s'aligner le long de leur axe secondaire comme la propriété CSS align-items leur a
demandé, et un ou plusieurs de ces contenus vont s'aligner suivant leur axe
secondaire comme la propriété align-self leur a demandé, ignorant ainsi la
demande par défaut.

Donc, si nous voulons centrer le contenu 2 par rapport a son axe secondaire, alors
que l'ensemble des contenus sont calés au début de leur axe secondaire, il nous
suffit tout simplement de donner la valeur cenfer a la propriété align-self du
contenu 2.

#conteneur {
display: flex;
flex-direction: column;
justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}

.contenut {
background-color: #f9f;
padding: 20px;

}

.contenu?2 {
background-color: #ff3;
padding: 20px;
align-self: center;

}

.contenu3 {

background-color: #366;
padding: 20pXx;




164 Chapitre 11

Voici le résultat dans un navigateur :

IR e

£ > 0 6 o x| k= L ®

Contenu 2

Figure 11-29 : Le contenu? est centré suivant son axe secondaire

Si nous donnons la valeur flex-start a la propriété align-self du contenu 2, alors le
contenu 2 se retrouvera au début de son axe secondaire.

.contenu2 {
background-color: #ff3;
padding: 20px;
align-self: flex-start;

Voici le résultat dans un navigateur :

= = o a B k| E oL

Contenu 2

Figure 11-30 : Le contenu?2 est calé au début de l'axe secondaire

Et si nous voulons que le contenu 2 occupe toute la largeur qui lui est alloué au
sein de son conteneur, alors nous donnons la valeur stretch au contenu 2.

.contenu2 {
background-color: #ff3;
padding: 20px;
align-self: stretch;




L'axe principal et I'axe secondaire 165

Voici le résultat dans un navigateur :
) = > T O e e
= = © & 0] * = L E oo
Contenu 2

Figure 11-31 : Le contenu2 occupe toute la largeur de l'axe secondaire

Si nous changeons la direction de la propriété flex-direction en lui donnant pour
valeur row, alors l'axe secondaire devient l'axe vertical et en maintenant tout le
reste du code CSS, comme ceci

#conteneur {
display: flex;
flex-direction: row;
justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}

.contenut {
background-color: #f9f;
padding: 20px;

}

.contenu2 {
background-color: #ff3;
padding: 20px;
align-self: stretch;

}

.contenu3 {

background-color: #366;
padding: 20px;




166 Chapitre 11

Voici le résultat dans un navigateur :

B & | 5 Flexgox X

e =2 © ®m Ko w| = L

Figure 11-32 : Inversion de la direction

Pour terminer sur ce sujet, nous pouvons demander que le contenu 2 soit en bas de
son axe secondaire et que le contenu 3 se retrouve centré suivant son axe

secondaire.

#conteneur {

display: flex;
flex-direction: row;
justify-content: center;
align-items: flex-start;
background-color: #ccc;
height: 200px;

}

.contenu1 {
background-color: #f9f;
padding: 20px;

}

.contenu2 {
background-color: #ff3;
padding: 20px;
align-self: flex-end;

}

.contenu3 {

background-color: #366;
padding: 20px;
align-self: center;




L'axe principal et I'axe secondaire 167

Voici le résultat dans un navigateur :

B a8 rlexsox x [ - @

= = O B Ko * £ gL @

Contenu 2

Figure 11-33 : Contenu 2 positionné en bas et contenu3 centré

11.9. Alignement de plusieurs lignes ou colonnes

Reprenons le méme code HTML que précédemment.

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>FlexBox</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>

</body>

</html>

Concernant le CSS, nous maintenons une direction en ligne uniquement.
#conteneur {

display: flex;

flex-direction: row;

background-color: #ccc;

height: 200px;




168 Chapitre 11

}

.contenu1 {
background-color: #f9f;
padding: 20px;

}

.contenu2 {
background-color: #ff3;
padding: 20px;

}

.contenu3 {
background-color: #366;
padding: 20px;

}

Voici le résultat dans un navigateur :

= = © @ K 0% = L 8

Contenu 2

Figure 11-34 : Direction des contenus en ligne

Nous allons a présent dupliquer trois fois, les contenus au niveau HTML

<!doctype html>
<htmlI>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">
<div class="contenu1">Contenu 1</div>




L'axe principal et I'axe secondaire 169

<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>

</body>

</html>

Nous ne touchons pas au code CSS, voici ce que nous obtenons dans un navigateur

LR

(—eoab‘a 0% |

Contenu
2

Contenu
2

- T S e T 5
Figure 11-35 : Duplication des contenus

Par défaut, il n'y a pas de retour a la ligne, les contenus s'affichent les uns & coté
des autres. Pour rémédier a ce probleme, il nous suffit d'écrire la propriété flex-
wrap et de lui donner pour valeur wrap. Cette propriété est a écrire dans les
propriétés CSS du conteneur.

#conteneur {
display: flex;
flex-direction: row;
flex-wrap: wrap;
background-color: #ccc;
height: 200px;




170

Chapitre 11

Voici le résultat dans un navigateur :

B FlexBox %

= = O & (Ko

0% *+ 2 e

Contenu 2

Contenu 2

Contenu 2

Figure 11-36 : Mise en place d'un retour a la ligne

Les contenus reviennent a la ligne selon la largeur de leur contenu. Plus le contenu
sera large et moins nous aurons de lignes. Dans le cas contraire, plus le contenu
sera petit et plus nous aurons de lignes.

Maintenant que nous avons défini des lignes, nous pouvons alors intervenir sur ces
lignes afin de les positionner. Par exemple, nous pourrions demander que ces lignes
soient centrées suivant 1'axe secondaire. L'axe secondaire étant ici l'axe vertical.

N

Pour cela, nous avons a notre disposition la propriété align-content que nous
devons placer dans les propriétés CSS du conteneur.

#conteneur {
display: flex;
flex-direction: row;
flex-wrap: wrap;
align-content: center;
background-color: #ccc;
height: 200px;

}

.contenu1 {
background-color: #9f;
padding: 20px;

}

.contenu?2 {
background-color: #ff3;
padding: 20px;

}

.contenu3 {

background-color: #366;




L'axe principal et I'axe secondaire 171

padding: 20px;

Voici le résultat dans un navigateur :
- B Flexgox 82
= =2 O o6 7<D - o - o 7777.‘7*7 = A E o

Figure 11-37 : Alignement des lignes centrées selon l'axe secondaire

Si nous souhaitons caler les lignes en haut de leur axe secondaire, il nous suffit tout
simplement de donner la valeur flex-start a la propriété align-content.
#conteneur {

display: flex;

flex-direction: row;

flex-wrap: wrap;

align-content: flex-start;

background-color: #ccc;

height: 200px;

Voici le résultat dans un navigateur :
- 5 FlexBox 82
£« > 0 a o Ok = 2@

Figure 11-38 : Alignement des lignes en haut de l'axe secondaire



172 Chapitre 11

Si nous souhaitons caler les lignes en bas de leur axe secondaire, il nous suffit tout
simplement de donner la valeur flex-end a la propriété align-content.
#conteneur {

display: flex;

flex-direction: row;

flex-wrap: wrap;

align-content: flex-end;

background-color: #ccc;

height: 200px;

Voici le résultat dans un navigateur :
- B FlexBox X
« >lo e |o 0| = 2 e

Contenu 2 ’

Figure 11-39 : Alignement des lignes en bas de ['axe secondaire

Nous pouvons également positionner nos lignes en utilisant les valeurs space-
between et space-around.

#conteneur {
display: flex;
flex-direction: row;
flex-wrap: wrap;
align-content: space-between;
background-color: #ccc;
height: 200px;




L'axe principal et I'axe secondaire

Voici le résultat dans un navigateur

BEBlo e

« > 0 a |o 0k x oL e

Figure 11-40 : Alignement des lignes en space-between

Cette fois en utilisant la valeur space-around.

173

#conteneur {
display: flex;
flex-direction: row;
flex-wrap: wrap;
align-content: space-around;
background-color: #ccc;
height: 200px;

Voici le résultat dans un navigateur :
- B Flexgox X
« > 0 & |o x| * 2 ©

Contenu 2 Contenu 2

Figure 11-41 : Alignement des lignes en space-around

Et pour terminer sur la propriété align-content, nous pouvons lui donner la valeur

stretch qui est la valeur par défaut.



174 Chapitre 11

#conteneur {
display: flex;
flex-direction: row;
flex-wrap: wrap;
align-content: stretch;
background-color: #ccc;
height: 200px;

Voici le résultat dans un navigateur :
BIE| © reser x
= = O ® @ m *x L B

Contenu 2 Contenu 2

Contenu 2

Figure 11-42 : Alignement des lignes en stretch

Bien entendu, nous pouvons la-aussi modifier la direction de nos contenus et de ce
fait modifier 1'axe secondaire. Si nous donnons la direction en colonne, alors 1'axe
secondaire sera l'axe horizontal.
#conteneur {

display: flex;

flex-direction: column;

flex-wrap: wrap;

align-content: stretch;

background-color: #ccc;

height: 200px;

}

.contenu {
background-color: #9f;
padding: 20px;

}

.contenu2 {



L'axe principal et I'axe secondaire 175

background-color: #ff3;
padding: 20px;

}

.contenu3 {
background-color: #366;
padding: 20px;

}

Voici le résultat dans un navigateur :

¢« > 0 & [o Dx | koL@
Contenu 2 Contenu 2 Contenu 2

Figure 11-43 : Alignement en colonne

11.10. Conclusion

Nous venons d'apprendre a positionner n'importe quel contenu au sein de son
conteneur. Les alignements de contenu se font dans tous les sens. Il suffit
simplement de définir la direction de départ et ensuite il nous est facile de
positionner un ou plusieurs contenus, grace aux nouvelles propriétés CSS que nous
venons de découvrir.






Chapitre 12

Manipulation des contenus

12.1. Gérer les ordres d'affichage

Nous allons voir ici la propriété order. Cette propriété CSS est extrémement
puissante car elle va nous permettre de pouvoir déplacer des contenus sans pour
autant toucher au code HTML.

Ecrivons notre fichier HTML en donnant trois boites a un conteneur. Ces trois
boites seront nommées contenu 1, contenu 2 et contenu 3, comme nous l'avons fait
précédemment.

<ldoctype htmi>

<html>

<head>

<meta charset="utf-8">

<title>FlexBox</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>

</div>

</body>

</html>

Au niveau du code CSS, nous demandons simplement un affichage en ligne.

#conteneur {
display: flex;
flex-direction: row;
background-color: #ccc;
height: 200px;

}

.contenut {
background-color: #f9f;
padding: 20px;




178 Chapitre 12

}
.contenu?2 {
background-color: #ff3;
padding: 20px;
}
.contenu3 {
background-color: #366;
padding: 20px;
}
Voici le résultat dans un navigateur :
(B8]  roeor ~ el
< > O @ [0} * = A B e

Contenu 2

Figure 12-1 : Alignement horizontal des contenus

Nous souhaitons a présent placer le contenu 2 en premier, avant le contenu 1. Outre
le fait de pouvoir le modifier en HTML, en utilisant la propriété order, nous allons
pouvoir positionner les contenus dans n'importe quel ordre. Cette propriété sera a
placer dans les propriétés CSS du contenu que l'on souhaite déplacer. Il suffit
ensuite de donner un chiffre en valeur de cette propriété. Plus ce chiffre sera petit et
plus le contenu sera prioritaire par rapport aux autres contenus. La valeur par
défaut de la propriété order est 1a valeur 0.

#conteneur {
display: flex;
flex-direction: row;
background-color: #ccc;
height: 200px;

}

.contenu {
background-color: #f9f;
padding: 20px;




Manipulation des contenus 179

}

.contenu2 {
background-color: #ff3;
padding: 20px;
order: -1;

}

.contenu3 {
background-color: #366;
padding: 20px;

}

Voici le résultat dans un navigateur :

B 8|0 resor x|+

£ > 0 e o

Contenu 2

Figure 12-2 : Le contenu 2 passe devant le contenul

Les valeurs que nous pouvons donner a la propriété order peuvent étre des valeurs
positives ou bien des valeurs négatives. Ce seront systématiquement des valeurs
entieres.
Si nous souhaitons positionner le contenu 3 avant le contenu 2, alors nous donnons
une valeur inférieure a la propriété order du contenu 3.
.contenu3 {

background-color: #366;

padding: 20px;

order: -2;




180 Chapitre 12

Voici le résultat dans un navigateur :

DU e

« 5> 0 @ |o 0kl x= 2 oe -

I ) I

Figure 12-3 : Le contenu 3 passe devant le contenu 2

Et si nous voulons positionner le contenu 2 apres la contenu 1, alors nous donnons
une valeur supérieure a la propriété order du contenu 2 par rapport a celle du
contenu 1 qui par défaut a la valeur 0.

#conteneur {
display: flex;
flex-direction: row;
background-color: #ccc;
height: 200px;

}

.contenu1 {
background-color: #9f;
padding: 20px;

}

.contenu2 {
background-color: #ff3;
padding: 20px;
order: 1;

}

.contenu3 {

background-color: #366;
padding: 20px;
order: -2;




Manipulation des contenus 181

Voici le résultat dans un navigateur
B & | B Fexeox X |+ G

¢« > 0 a |o (IR Y S

“ : -

Figure 12-4 : Le contenu 2 passe apres le contenu 1

12.2. Augmenter la largeur d'un contenu

Nous allons voir comment nous pouvons gérer la largeur d'un contenu. Par défaut,
la largeur d'un contenu dépend de ce que contient le contenu.
Voici notre fichier HTML
<ldoctype html>
<htmlI>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
</div>
</body>
</html>

Et voici notre fichier CSS
#conteneur {
display: flex;
background-color: #ccc;
height: 200px;




182 Chapitre 12

}

.contenu1 {
background-color: #f9f;
padding: 20px;

}

.contenu2 {
background-color: #ff3;
padding: 20px;

}

.contenu3 {
background-color: #366;
padding: 20px;

}

Voici le résultat de ce code dans un navigateur :

oaloen e

« > 0 a |o D%+ 2 8 -

I : I

Figure 12-5 : Les contenus occupent leur propre largeur

Si nous souhaitons que le contenu 1 ait une largeur plus grande que celle qu'il a par
défaut, alors nous pouvons lui donner la propriété flex-grow. Cette propriété a pour
valeur par défaut la valeur 0. En lui donnant la valeur 2, alors le contenu 1
occupera au minimum deux fois plus de largeur que les autres contenus.

#conteneur {
display: flex;
background-color: #ccc;
height: 200px;
}
.contenu1 {
background-color: #9f;
padding: 20px;




Manipulation des contenus 183

flex-grow: 2;

}

.contenu2 {
background-color: #ff3;
padding: 20px;

}

.contenu3 {
background-color: #366;
padding: 20px;

}

Voici le résultat dans un navigateur :

o K]

¢« >0 & |o oDx| = L oe -

- : I

Figure 12-6 : Le contenu 1 occupe toute la largeur restante

Si nous donnons la valeur 1 a la propriété flex-grow de chaque contenu, alors ils
occuperont tout I'espace qui leur est alloué, de fagon proportionnelle.

#conteneur {
display: flex;
background-color: #ccc;
height: 200px;
}
.contenu1 {
background-color: #f9f;
padding: 20px;
flex-grow: 1;
}
.contenu?2 {
background-color: #ff3;
padding: 20px;




184 Chapitre 12

flex-grow: 1;

}

.contenu3 {
background-color: #366;
padding: 20px;
flex-grow: 1;

}

Voici le résultat obtenu dans un navigateur :

<« >0 a |o DR e L8

Contenu 2

Figure 12-7 : Les contenus occupent tout l'espace de facon proportionnelle

Et cette fois, si nous donnons la valeur 2 a la propriété flex-grow du contenu 2,
alors le contenu 2 occupera deux fois plus d'espace que les autres contenus.

#conteneur {
display: flex;
background-color: #ccc;
height: 200px;
}
.contenu1 {
background-color: #f9f;
padding: 20px;
flex-grow: 1;
}
.contenu?2 {
background-color: #ff3;
padding: 20px;
flex-grow: 2;




Manipulation des contenus 185

.contenu3 {
background-color: #366;
padding: 20px;
flex-grow: 1;

}

Voici le résultat obtenu dans un navigateur :

oo - e TET]

¢« > 0 a |o O%x| * 2 & -

. : .

Figure 12-8 : Le contenu 2 occupe deux fois plus d'espace que les autres contenus

12.3. Diminuer ou définir la largeur d'un contenu

Si nous souhaitons diminuer la largeur d'un contenu, nous avons a notre disposition
la propriété flex-shrink. Sa valeur par défaut est 1.
Reprenons notre code HTML

<!doctype html>
<htmlI>
<head>
<meta charset="utf-8">
<title>FlexBox</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="conteneur">
<div class="contenu1">Contenu 1</div>
<div class="contenu2">Contenu 2</div>
<div class="contenu3">Contenu 3</div>
</div>
</body>
</html>




186 Chapitre 12

Au niveau CSS, donnons la valeur 1 a la propriété flex-shrink que nous définissons
pour nos trois contenus.

#conteneur {
display: flex;
background-color: #ccc;
height: 200px;

}

.contenu {
background-color: #f9f;
padding: 20px;
flex-shrink: 1;

}

.contenu?2 {
background-color: #ff3;
padding: 20px;
flex-shrink: 1;

}

.contenu3 {
background-color: #366;
padding: 20px;
flex-shrink: 1;

}

Voici le résultat obtenu dans un navigateur :

N -~ e

= > 0 6 B x|+ 2 e -

I : I

Figure 12-9 : Nous donnons la valeur 1 a flex-shrink de chaque contenu

La propriété flex-basis va nous permettre de pouvoir donner une valeur de largeur
a un contenu. Par exemple, si nous donnons la valeur 0 a la propriété flex-basis du
contenu 3, alors sa largeur sera la plus petite possible.



Manipulation des contenus 187

#conteneur {
display: flex;
background-color: #ccc;
height: 200px;

}

.contenu {
background-color: #f9f;
padding: 20px;

}

.contenu2 {
background-color: #{f3;
padding: 20px;

}

.contenu3 {
background-color: #366;
padding: 20px;
flex-basis: 0;

}

Voici le résultat obtenu dans un navigateur :

><|>+v SevET X

<« > O & |o Ll = 2 ©

Contenu 2

Figure 12-10 : La largeur du contenu 3 est la plus petite possible

La valeur par défaut de la propriété flex-basis est la valeur auto.
#conteneur {

display: flex;

background-color: #ccc;

height: 200px;




188

.contenu1 {
background-color: #9f;
padding: 20px;

}

.contenu?2 {
background-color: #ff3;
padding: 20px;

}

.contenu3 {
background-color: #366;
padding: 20px;
flex-basis: auto;

}

Chapitre 12

Voici le résultat obtenu dans un navigateur :

TN e

<« > O & |0

I ) I

Figure 12-11 : La valeur auto de flex-basis est la valeur par défaut

Grace a la propriété flex-basis, il est également possible de définir une largeur de

contenu en pixel.

#conteneur {
display: flex;
background-color: #ccc;
height: 200px;
}
.contenu1 {
background-color: #f9f;
padding: 20px;




Manipulation des contenus 189

.contenu?2 {
background-color: #ff3;
padding: 20px;

}

.contenu3 {
background-color: #366;
padding: 20pXx;
flex-basis: 100px;

}

Voici le résultat obtenu dans un navigateur

BElo e

£ > 0 @ o Ll Y AT

I . .

Figure 12-12 : On définie 100 pixels de large pour le contenu 3

12.4. La super propriété flex

Il existe une propriété qui regroupe les trois propriétés que nous venons de voir. 1l
s'agit de la propriété flex. En définissant la propriété flex, nous définissons alors la
propriété flex-grow, flex-shrink et flex-basis.

Si nous devions définir une propriété flex pour le contenu 3 que nous avons définie
précédemment, alors nous lui donnerions en premiere valeur la valeur O puisqu'il
s'agit de la valeur par défaut de la propriété flex-grow. Nous lui donnerions la
valeur 1 en deuxieme valeur puisqu'il s'agit de la valeur par défaut de la propriété
flex-shrink. Et enfin, nous lui donnerions la valeur 100px puisqu'il s'agit de la
valeur que nous avons définie pour la propriété flex-basis.

.contenu3 {
background-color: #366;
padding: 20px;
flex: 0 1 100px;




190 Chapitre 12

Nous obtiendrions exactement le méme résultat que précédemment :

XN e

« > 0 a |o Ok oE= o2 oe

I E .

Figure 12-13 : Résultat de la propriété flex

12.5. Conclusion

Nous sommes maintenant en mesure de pouvoir également gérer la largeur des
différents contenus. Grace a la technologie flexbox, nous pouvons rendre
I'ensemble de nos boites HTML flexibles et les manipuler exactement comme nous
en avons envie. Et cela dans tous les sens.

Une derni¢re précision, il est tres important de connaitre la valeur par défaut des
propriétés flex que nous venons de voir ensemble.



Chapitre 13

Création d'une maquette

13.1. Présentation du travail

Afin de consolider nos nouvelles connaissances sur la technologie flexbox, nous

N

allons créer la maquette d'un site totalement responsive. Voici & quoi devra
ressembler notre maquette sur un écran d'ordinateur.

B 5 oumentsansnom X [FEIV TR

£« > 0 & o ok L

Figure 13-1 : Mise en page pour un écran d'ordinateur

Et voici a qui devra ressembler notre maquette pour les écrans inférieurs :

B a|ﬁ Document sansnom X [+ v - o

& =2 © & N x| = L e

HEADER

SECTION

FOOTER

Figure 13-2 : Mise en page pour les écrans inférieurs



192

13.2. Premiére partie

Chapitre 13

La premiere chose que nous avons a faire est de mettre en place nos balises

structurantes HTMLS5. Nous allons donc créer notre fichier HTML

<!doctype htmi>

<html>

<head>

<meta charset="utf-8">

<title>Mon site</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="main">
<header>HEADER</header>

<div id="wrapper">
<nav>NAV</nav>
<section>SECTION</section>
<aside>ASIDE</aside>
</div>

<footer>=FOOTER</footer>
</div>
</body>
</html>

Nous avons enfermé nos balises structurantes HTMLS5 dans une boite a laquelle
nous avons donné pour identifiant main. Cette boite sera le conteneur de nos
balises structurantes HTMLS5. Nous avons également créé une boite qui a pour
identifiant wrapper et nous y avons enfermé les balises nav, section et aside.

En conclusion, nous pouvons définir trois grandes zones a l'intérieur de notre boite
dont l'identifiant est main. La premiére zone sera celle du header, 1a seconde zone
sera celle du wrapper et la troisiéme et derni€re zone sera celle du footer. De la,

nous pouvons établir le début de notre feuille de style CSS.

body {
background-color: black;

}

#main {



Création d'une maquette 193

display:flex;
background-color: white;
padding: 20pXx;
margin: 10px;
flex-direction: column;
}
#wrapper, header, footer {
background-color: grey;
padding: 20pXx;
margin: 5px;

Voici le résultat dans un navigateur
[EIE]| = vonsie x|+ v

- a
€« > 0 & |0 x| = LB

NAV

SECTION
ASIDE

FOOTER

Figure 13-3 : Mise en place de trois zones

Nous en avons profité pour donner une couleur de fond au body, ainsi qu'aux
différentes zones.

La chose importante que nous avons faite ici est de donner une direction en
colonne a notre contenu, grace a la propriété flex-direction au sein du conteneur.

13.3. Deuxiéme partie

Nous venons de mettre en place les bases de notre mise en page. Pour aller plus
loin sur cette mise en page, nous devons a présent positionner les contenus qui se
trouvent a l'intérieur de la boite dont I'identifiant est wrapper. Ces contenus doivent
étre positionnés en ligne. Nous devons donc définir la boite wrapper comme étant
un conteneur et donc lui donner la propriété display avec la valeur flex. Nous en
profiterons également pour donner un style a la nav, la section ainsi que 1'aside afin
de les rendre visuellement plus jolies.



194 Chapitre 13

body {
background-color: black;

}

#main {
display:flex;
background-color: white;
padding: 20pXx;
margin: 10px;
flex-direction: column;

}

#wrapper, header, footer {
background-color: grey;
padding: 20px;

margin: 5px;
}
#wrapper {
display:flex;
}

nav, section, aside {
background-color: yellow;
padding: 20pXx;

margin: 3px;
Voici le résultat dans un navigateur :
B8] 5 vonsie x [Fv
€ 5 O iy [0}

NAV SECTION ASIDE

FOOTER

*| x 2 e -

Figure 13-4 : Définition du wrapper en conteneur

On rappelle que par défaut, le fait de donner un display:flex a un conteneur, fera
que les contenus seront alignés suivant 1'axe horizontal. On rappelle également que



Création d'une maquette

195

par défaut, les contenus nav, section et aside ont pour largeur ce qu'ils contiennent.
Si nous voulons que la section occupe toute la largeur restante, alors nous pouvons

Iui donner la propriété flex-grow.

body {
background-color: black;

}

#main {
display:flex;
background-color: white;
padding: 20px;
margin: 10px;
flex-direction: column;

}

#wrapper, header, footer {
background-color: grey;
padding: 20px;

margin: 5px;
}
#wrapper {
display:flex;
}

nav, section, aside {
background-color: yellow;
padding: 20px;

margin: 3px;
}
section {

flex-grow: 2;




196 Chapitre 13

Voici le résultat dans un navigateur :
B8] 5 vonsie x|+ v = @

€ > 0 & |0 x| k= L e

HEADER

FOOTER

Figure 13-5 : On augmente la largeur de la section

Nous venons de mettre en place la mise en page souhaitée pour les écrans
d'ordinateur. Nous allons a présent nous intéresser a la mise en page souhaitée pour
les écrans inférieurs. La premieére chose a faire est de définir un point de rupture.
Nous allons définir ce point a 900 pixels. Ensuite, que veut-on pour les écrans
inférieurs ? Nous voulons simplement que la nav, la section ainsi que 1'aside soient
empilées. Les autres zones sont déja empilées.

body {
background-color: black;

}

#main {
display:flex;
background-color: white;
padding: 20px;
margin: 10px;
flex-direction: column;

}

#wrapper, header, footer {
background-color: grey;
padding: 20pXx;

margin: 5px;
}
#wrapper {
display:flex;
}

nav, section, aside {
background-color: yellow;




Création d'une maquette 197

padding: 20px;
margin: 3px;
}
section {
flex-grow: 2;
}
@media screen and (max-width:900px) {
#wrapper {
flex-direction: column;
}
nav {
order: 1;
}
aside {
order: 2;
}
}

Nous avons également modifié 1'ordre d'apparition puisque 1'empilement devra étre
la section en premier, suivie de la nav, elle-méme suivie de 'aside.

E@‘EMonsne ><|+ v )

e = © @ Ko *| = L &

HEADER

SECTION

FOOTER

Figure 13-6 : Mise en page pour les écrans inférieurs



198 Chapitre 13

13.4. Conclusion

Avec quelques propriétés CSS issues de flexbox, il est tres facile de mettre en page
des conteneurs ainsi que des contenus. La gestion du responsive en devient tout
aussi facile.

Nous venons dans ce livre d'apprendre la technologie grid ainsi que la technologie
flexbox. Dans la troisieme et derniere partie de ce livre, nous allons voir comment
utiliser ces deux technologies ensembles.



Partie 3

GRID &
FLEXBOX
ENSEMBLE






Chapitre 14

Utiliser grid & flexbox ensemble

14.1. Le principe de base

Dans ce chapitre nous allons voir le principe de base de construction d'une page
web en utilisant les technologies grid et flexbox ensemble. Tout d'abord, nous
allons considérer un principe, le principe de l'entonnoir. Cela signifie clairement
que lorsque I'on cherche a mettre en page un site internet, nous partirons du général
pour terminer sur le détail.

Le principe de I’entonnoir

Du général
au detail

Figure 14-1 : Le principe de l'entonnoir

La premiere chose que nous devons faire lorsque nous voulons créer une mise en
page, c'est tout simplement de mettre en place les balises HTML. Les balises
structurantes et non les balises de détail telles que les balises de titre ou de
paragraphe.

Mise en page : principe de base

HEADER

NAV  ARTICLE

FOOTER

Figure 14-2 : Mise en page des balises structurantes



202 Chapitre 14

Une fois les balises structurantes écrites, nous les mettons en page en utilisant la
technologie grid, exactement ce que nous avons appris dans la premiere partie de
ce livre. Nous ne cherchons pas a mettre en place des détails, nous cherchons
simplement a positionner les différentes zones sur la page web. La zone header, la
zone nav, la zone article et la zone footer, pour cet exemple. C'est également a
cette étape que nous décidons si notre site sera mobile first ou bien destock first.
Nous écrirons le CSS en conséquence. Si nous voulons que notre site soit en
priorité destiné aux écrans de smartphone, alors nous choisirons une mise en page
coté mobile first. Si nous souhaitons que notre site soit en priorité pour les écrans
d'ordinateur alors nous choisirons une mise en page destock first. Ensuite nous
mettrons en place les médias queries pour définir les autres mises en page. Une fois
que toutes les zones ont été positionnées, alors nous allons pouvoir entrer dans le
détail. Pour cela nous irons a l'intérieur de chacune des zones afin de les travailler.
En fait nous irons positionner les contenus au sein de ces zones. En clair, nous
ferons de chaque zone un conteneur et chaque zone deviendra un flexbox.

Faisons un récapitulatif de la facon de procéder :
1. On écrit les balises structurantes.
2. On définit le mobile first ou le destock first.
3. On met en forme les balises structurantes en utilisant le CSS grid.
4. On met en forme chaque zone de balise structurante en utilisant flexbox.

14.2. Le HTML 5

On débute la mise en page de son site internet par 1'écriture des balises
structurantes HTML 5. Ici nous allons réaliser une mise en page simple en plagcant
une entéte de page (le header), un pied de page (le footer), une zone pour la
navigation ainsi qu'une zone pour l'article. Ecrivons notre fichier HTML

<ldoctype htmi>

<html>

<head>

<meta charset="utf-8">
<title>Mon site</title>

<link rel="stylesheet" href="style.css" />
</head>

<body>
<header>header</header>
<nav>hav</nav>
<article>article</article>
<footer>footer</footer>




Utiliser grid & flexbox ensemble 203

</body>
</htmli>

Ecrivons également une feuille de style juste pour mettre des couleurs de fond aux
différentes zones afin de pouvoir les distinguer au sein d'un navigateur.

header {

background-color: #900;
}
nav {

background-color: #060;
}
article {

background-color: #f60;
}
footer {

background-color: #fOf;
}

Nous venons de définir quatre zones a qui nous avons donné une couleur de fond.
Ces zones ont par défaut un comportement CSS de type bloc. Cela signifie qu'elles
vont occuper toute la largeur qui leur est allouée.

Voici le résultat dans un navigateur

B & | 5 Monsite x B

E =2 O & @ * x 2 &
header

article

Figure 14-3 : Mise en place des balises structurantes HTML 5

Lorsque I'on crée une page web, treés souvent on neutralise les marges par défaut du
navigateur. Pour cela nous donnons la valeur 0 aux propriétés margin et padding
que nous appliquons a I'élément body.
body {

margin: 0;

padding:0;

}
header {

background-color: #900;




204 Chapitre 14

}

nav {

background-color: #060;
}
article {

background-color: #f60;
}
footer {

background-color: #f0f;

}

Voici le résultat dans un navigateur :

B & | O Monsite X

= =2 O @ Ko

header

article

Figure 14-4 : Suppression des marges par défaut du navigateur

A partir de maintenant, nous allons enfermer nos balises structurantes a l'intérieur
d'une boite div. Ainsi nous pourrons contrler la largeur que nous souhaitons
donner a notre site. Nous donnerons l'identifiant site a cette boite div.

<htmlI>

<head>

<meta charset="utf-8">

<title>Mon site</title>

<link rel="stylesheet" href="style.css" />

</head>

<body>

<div id="site">
<header>header</header>
<nav>nav</nav>
<article>article</article>
<footer>footer</footer>

</div>

</body>

</html>




Utiliser grid & flexbox ensemble 205

Nous allons donc pouvoir appliquer une largeur a notre site web au travers de son
identifiant. Nous lui donnerons une largeur de 75%. Nous en profiterons également
pour centrer le site au sein de la page.

body {

margin: 0;

padding:0;
}
#site {

width: 75%;

margin: auto;
}
header {

background-color: #900;
}
nav {

background-color: #060;
}
article {

background-color: #f60;
}
footer {

background-color: #f0f;
}

Voici le résultat dans un navigateur

= =2 © ® o] * = 7 & -
header
article

Figure 14-5 : Une boite div gere la largeur du site



206 Chapitre 14

14.3. Les principes de base de grid

Précédemment nous avons enfermé nos balises structurantes a l'intérieur d'une
boite div. Le constat était que les balises structurantes sont par défaut de type bloc.
Elles occupent 100% de la largeur qui leur est allouée.

Ce travail maintenant réalisé, nous pouvons passer a CSS grid. Nous allons aller
dans les grandes lignes de grid. On rappelle que l'on travaille sous le principe de
I'entonnoir. Aucun détail, que du général.

Le travail sera toujours le méme. A savoir, nous donnons un display:grid au
conteneur. Puis nous devons définir des colonnes au conteneur. Pour cela nous
utilisons la propriété grid-template-columns. Ensuite, nous devons donner des
noms aux différentes zones définies pour les différents éléments structurants. Pour
cela nous utilisons la propriété grid-area que nous écrivons au sein des propriétés
de chaque élément. Enfin, nous revenons dans les propriétés CSS du conteneur, et
nous écrivons la propriété grid-template-areas afin de positionner les éléments sur
la page web.

Maintenant que nous avons vu les principes de base de grid, revenons sur notre
code précédent. Nous avions enfermé les balises structurantes a l'intérieur de la
boite qui a pour identifiant site. C'est précisément a cette boite que nous allons
donner le display:grid. Ensuite nous devons définir le nombre de colonnes que
devra occuper notre site. Pour notre exemple, nous allons définir deux colonnes.

#site {
width: 400px;
margin: auto;
display: grid;
grid-template-columns: 1fr 2fr;
}

Maintenant nous devons définir un nom aux différentes zones structurantes grace a
la propriété grid-area que nous écrivons dans chacune des propriétés CSS des
éléments structurants. Dans notre exemple, nous avons quatre zones, Le header, la
nav, l'article et le footer.

header {
background-color: #900;
grid-area: header;
}
nav {
background-color: #060;
grid-area: nav;




Utiliser grid & flexbox ensemble 207

article {
background-color: #f60;
grid-area: article;

}

footer {
background-color: #fOf;
grid-area: footer;

}

Il ne nous reste plus qu'a dire comment les éléments doivent étre positionnés sur la
page. Pour cela nous retournons dans les propriétés CSS du conteneur pour y écrire
la propriété grid-template-areas.
#site {
width: 75%:;
margin: auto;
display: grid;
grid-template-columns: 1fr 2fr;
grid-template-areas:
"header header"
"nav article"
"footer footer";

}

Ici nous venons de placer le header en haut de la page sur les deux colonnes du
site, en dessous nous avons placé la navigation a gauche de l'écran et l'article a
droite de 1'écran. Enfin le footer en bas de la page sur les deux colonnes du site.

Nous pouvons également ajouter des gouttieres afin d'espacer les différentes zones.

#site {
width: 75%;
margin: auto;
display: grid;
grid-gap: 5px;
grid-template-columns: 1fr 2fr;
grid-template-areas:
"header header"
"nav article"
"footer footer";




208

Voici le code CSS complet de notre exemple.

Chapitre 14

body {
margin: O;
padding:0;

}

#site {
width: 75%;
margin: auto;
display: grid;
grid-gap: 5px;

grid-template-columns: 1fr 2fr;
grid-template-areas:
"header header"
"nav article"
"footer footer";
}
header {
background-color: #900;
grid-area: header;
}
nav {
background-color: #060;
grid-area: nav;
}
article {
background-color: #f60;
grid-area: article;
}
footer {
background-color: #fOf;
grid-area: footer;




Utiliser grid & flexbox ensemble 209

Voici le résultat dans un navigateur

B E|EMonsite X |+”VV ,;, s bR
& = O @& o] * D= O |~
header

mav S article

Figure 14-6 : Notre site sur 2 colonnes

La structure de notre site est maintenant réalisée. C'est vraiment trés facile et tres
rapide a mettre en place. Il nous faut juste quelques propriétés CSS issues de la
technologie grid.

Si par exemple, nous changeons d'avis et que nous souhaitons que la navigation
soit a droite de 1'écran et donc l'article a gauche, alors il nous suffit de les inverser
dans la propriété grid-template-areas. N'oublions pas cependant d'inverser la
largeur des colonnes dans la propriété grid-template-columns.

#site {
width: 75%;
margin: auto;
display: grid;
grid-gap: 5px;
grid-template-columns: 2fr 1fr;
grid-template-areas:
"header header"
"article nav"
"footer footer";

Voici le résultat dans un navigateur

B Monssite X

= 2 © @ Mo Ll - i =

header

article e

Figure 14-7 : Inversion des colonnes

Grace aux propriétés liées a CSS grid, nous pouvons positionner les différentes
zones ol bon nous semble sur la page web, sans pour cela étre obligé de modifier
le code HTML.



210 Chapitre 14

14.4. Le principe des media queries

Afin de mettre en place les media queries dans une feuille de style, nous
employons toujours le méme type d'écriture. A savoir, nous définissons les media
queries pour les écrans et nous définissons une largeur d'écran maximum ou une
largeur d'écran minimum.

@media screen and () {

}

Tout ce qui se retrouvera au sein des accolades sera la ou les propriétés CSS liées a
cet écran.

Si par exemple nous travaillons en destock first, nous pouvons définir une largeur
du site de 1000 pixels. Ce sera alors la largeur par défaut. Cette largeur aura alors
été définie dans les propriétés CSS du conteneur grice a la propriété width.

Ensuite et grice aux medias queries, nous pouvons alors définir la largeur du site
lorsque l'internaute viendra avec un navigateur inférieur a 1000 pixels. Par exemple
un navigateur d'une largeur maximum de 999 pixels.

@media screen and (max-width: 999px) {

}

Cela signifie que si l'internaute arrive avec un écran supérieur a 999 pixels, il aura
alors acces a notre site qui aura pour largeur par défaut, 1000 pixels. Dans le cas
contraire, si l'internaute arrive avec un écran inférieur ou égal a 999 pixels, alors il
aura acces a notre site qui aura pour largeur celle que nous lui aurons définie a
l'intérieur des accolades des media queries.

On peut ajouter autant de medias queries qu'on le souhaite. Par exemple on peut
définir des propriétés CSS pour notre site si l'internaute arrive avec un écran de
smartphone que 1'on pourrait définir a 200 pixels par exemple.

Dans ce cas, nous aurions des media queries pour les écrans inférieurs ou égaux a
200 pixels et des media queries pour les écrans dont la taille est comprise entre 999
et 201 pixels.

PROPRIETES PAR DEFAUT
@media screen and (max-width: 999px) and (min-width: 201px) {
PROPRIETES 1

}

@media screen and (max-width: 200px) {
PROPRIETES 2

}




Utiliser grid & flexbox ensemble 21

Si l'internaute arrive avec un écran d'au moins 1000 pixels, il aura les propriétés
CSS par défaut, s'il arrive avec un navigateur compris entre 999 pixels et 201
pixels il aura alors les propriétés CSS numéro 1, et enfin s'il arrive avec un écran
inférieur ou égal a 200 pixels il aura alors les propriétés CSS numéro 2.

14.5. Le viewport

Le meta viewport va nous permettre de rectifier les informations qui nous sont
fournies par le constructeur. Par exemple, un constructeur annonce un smartphone
ayant pour largeur 1280 pixels. Cependant les pixels annoncés par le constructeur
ne sont pas les pixels dont nous nous servons en qualité de développeur front end.
Ces 1280 pixels sont surtout liés a la définition de l'affichage du smartphone. En
réalité, les 1280 pixels annoncés seraient peut étre pour nous, concepteur de site
internet, 400 pixels. Le meta viewport va nous permettre de pouvoir rectifier cette
différence, nous permettant ainsi d'utiliser la méme échelle de pixels que celle
utilisée pour les écrans d'ordinateur. Voici comment doit étre déclaré un meta
viewport.

<meta name="viewport" content="width=device-width, initial-scale=1" />

device-width indique au navigateur d'utiliser la vraie taille de l'appareil.
Initial-scale=1 signifie qu'il n'y a aucun zoom. On est alors sur une échelle de 1
pourl.

Nous allons ajouter ce meta a notre fichier HTML
<ldoctype htmi>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="site">
<header>header</header>
<nav>nav</nav>
<article>article</article>
<footer>footer</footer>
</div>




212 Chapitre 14

</body>
</html>

14.6. Mise en place du responsive

Reprenons notre exemple précédent et ajoutons-lui les medias queries afin de
rendre notre site internet responsive.
Tout d'abord, modifions la largeur par défaut de notre site internet. Passons-la de
75% a 1000 pixels.
#site {
width: 1000px;
margin: auto;
display: grid;
grid-gap: 5px;
grid-template-columns: 2fr 1fr;
grid-template-areas:
"header header"
"article nav"
"footer footer";

}

Nous allons maintenant définir la mise en page de notre site pour les internautes
arrivant avec un écran compris entre 999 pixels et 201 pixels. Nous décidons que
pour ces écrans, la rav se retrouve a gauche de 1'écran, a coté de l'article qui sera a
droite de 1'écran, et également a c6té du foofer qui sera aussi a droite de 1'écran.
Nous passerons la largeur du site a 90%.

Voici les propriétés CSS pour les écrans compris entre 999 pixels et 201 pixels.

@media screen and (max-width: 999px) and (min-width: 201px) {
#site {

width: 90%;

grid-template-columns: 1fr 2fr;

grid-template-areas:
"header header"
"nav article"
"nav footer";




Utiliser grid & flexbox ensemble 213

Voici le résultat dans un navigateur compris en 999 et 201 pixels

« > 0 & |o - R

header

article

Figure 14-8 : Mise en page pour les écrans compris entre 999 et 201px

Occupons-nous a présent des écrans dont la largeur sera inférieure ou égale a 200
pixels. Nous maintiendrons une largeur de 90% pour le site. Nous demanderons
que l'ensemble des éléments soient empilés, donc une seule colonne avec la nav
au-dessus de l'article.

@media screen and (max-width: 200px) {
#site {

width: 90%;
grid-template-columns: 1fr;
grid-template-areas:

"header"

"nav"

"article"

"footer";

}

Voici le résultat dans un navigateur inférieur ou égal a 200 pixels

« > O @ ® 0 *‘ =
header
article

Figure 14-9 : Mise en page pour les écrans inférieurs ou égal a 200px



214 Chapitre 14

Voici la feuille de style complete

body {
margin: O;
padding:0;

}

#site {
width: 1000px;
margin: auto;
display: grid;
grid-gap: 5px;

grid-template-columns: 2fr 1fr;
grid-template-areas:
"header header"
"article nav"
"footer footer";

}

header {
background-color: #900;
grid-area: header;

}

nav {
background-color: #060;
grid-area: nav;

}

article {
background-color: #f60;
grid-area: article;

}

footer {
background-color: #fOf;
grid-area: footer;

}

@media screen and (max-width: 999px) and (min-width: 201px) {
#site {
width: 90%;




Utiliser grid & flexbox ensemble 215

grid-template-columns: 1fr 2fr;
grid-template-areas:
"header header"

"nav article"
"nav footer";
}
}
@media screen and (max-width: 200px) {
#site {
width: 90%;

grid-template-columns: 1fr;
grid-template-areas:
"header"
"nav"
"article"
"footer";

14.7. Les principes de base de flexbox

Il ne nous reste plus a présent qu'une seule étape, celle de la mise en place de
flexbox. Toujours en gardant a l'esprit le principe de 1'entonnoir, nous entrons a
présent dans le détail des zones. Si nous prenons par exemple la premiére zone,
c'est-a-dire le header, il nous suffit alors d'en faire un conteneur en lui donnant un
display:flex. De 1a nous entrons dans la technologie flexbox. Cela signifie
immédiatement que notre zone posseéde alors deux axes. Un axe principal, qui par
défaut sera I'axe horizontal et un axe secondaire, qui par défaut sera I'axe vertical.
Le fait de disposer de deux axes va nous permettre de pouvoir positionner les
contenus qui vont se retrouver a l'intérieur de la zone header. Si nous souhaitons
aligner ces contenus le long de leur axe principal, alors nous utiliserons la propriété
Jjustify-content et si nous souhaitons positionner les contenus le long de leur axe
secondaire alors nous utiliserons la propriétés align-item.

Revenons a notre exemple précédent. Nous allons placer au niveau HTML trois
boites div au sein du header. Nous donnerons a chacune de ces boites la classe
Sflexbox. Voici a la page suivante notre fichier HTML.



216 Chapitre 14

<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>Mon site</title>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div id="site">
<header>
<div class="flexbox">Box 1</div>
<div class="flexbox">Box 2</div>
<div class="flexbox">Box 3</div>
</header>
<nav>nav</nav>
<article>article</article>
<footer>footer</footer>
</div>
</body>
</html>

Nous en profitons pour définir une couleur de fond a nos trois nouvelles boites et
nous ajoutons ce code a notre fichier CSS

flexbox {
background-color: #ff0;

}

Voici le résultat dans un navigateur
E|EMonsite ><|+ v i o X

= =2 © @ N S S . S

Box 1
Box 2
Box 3

Figure 14-10 : Résultat sur un écran compris entre 999 pour 201px



Utiliser grid & flexbox ensemble 217

Nous nous rendons compte immédiatement que nos trois nouvelles boites ont un
comportement par défaut de type bloc. Elles sont empilées 1'une sur l'autre. Afin de
casser ce comportement, il nous suffit de donner la propriété display:flex a notre
header.
header {

background-color: #900;

grid-area: header;

display: flex;

Voici le résultat dans un navigateur

= 0 6 B x| = L & -
Box 1Box 2Box 3
article

Figure 14-11 : On donne un display:flex au header

De ce fait, le header posséde un axe principal ainsi qu'un axe secondaire, facilitant
ainsi sa mise en page. On peut a présent demander a aligner les trois boites selon

'axe principal.
header {
background-color: #900;
grid-area: header;
display: flex;
justify-content: space-around;

Voici le résultat dans un navigateur

<« > 0O @& |o * [

Box 1 Box 2 Box 3

Figure 14-12 : On aligne les contenus selon l'axe horizontal

Il nous suffit de répéter l'opération au sein de chaque élément, voire méme a
l'intérieur des différents media queries.



218

Voici le code CSS de l'exercice complet

Chapitre 14

body {
margin: O;
padding:0;

}

#site {
width: 1000px;
margin: auto;
display: grid;
grid-gap: 5px;

grid-template-columns: 2fr 1fr;
grid-template-areas:
"header header"
"article nav"
"footer footer";
}
header {
background-color: #900;
grid-area: header;
display: flex;
justify-content: space-around;
}
flexbox {
background-color: #ff0;
}
nav {
background-color: #060;
grid-area: nav;
}
article {
background-color: #f60;
grid-area: article;
}
footer {
background-color: #f0f;
grid-area: footer;




Utiliser grid & flexbox ensemble 219

}
@media screen and (max-width: 999px) and (min-width: 201px) {
#site {
width: 90%;

grid-template-columns: 1fr 2fr;
grid-template-areas:
"header header"

"nav article"
"nav footer";
}
}
@media screen and (max-width: 200px) {
#site {
width: 90%;

grid-template-columns: 1fr;
grid-template-areas:
"header"
"nav"
"article"
"footer";







A

Align-content...............c....... 81,170
Align-items.......cccccvveeernnnnen. 89,153
Align-self.......ccccceeeeevinnnnns 98, 161
Axe principal.........cccevieniinnenn. 139
Axe secondaire..........cccoeuvvuee..... 139
F

FIeX.uuuviiiiiiiiieeeeeeeeeee e 189
Flex-basis.........cccccccevviviiiiinnnn. 186
Flex-direction..........ccccvvveereen..... 127
Flex-flow.......ccccccoviii, 137
FIeX-grow.....ccccevviiennieeniieeenns 182
Flex-shrink...........ccccccevvviinnnnn. 185
Flex-wrap.....cccoccevvveeniieeeeennnns 133
Fractions.........cceevvveeeeeeeeeeeeveeenennns 32
G

Grid-area.......ccooeeeeevvvvcvieeeeeeeinnnnns 64
Grid-auto-columns.........cccuun....... 55
Grid-auto-flow..........coevveeeevennnnenn. 52
Grid-auto-TOWS........ccovvvvvvveerennn... 56
Grid-column......ccoooeeeeeieieieinn.. 47
Grid-column-end.........cccouvueeee..... 41
Grid-column-gap.......c.ccceeeennennns 28
Grid-column-start............cc.uv....... 41

Index lexical

Grid-gap......ccooveeeeeneeiiiieeceee 29
Grid-TOW..ovveeeeeeeeeeeiiiieeeeenee, 49, 56
Grid-row-end............ceeeeeeeeennn.n. 42
Grid-row-gap......cccceeeeeeernnennennnn. 29
Grid-row-start.......ccccceeeeeeeeeeennn... 42
Grid-template-areas..................... 65
Grid-template-columns................ 20
Grid-template-rows..........cc.......... 22
J

Justify-content..........c........... 77,141
Justify-items.......cccceeveeeeneennee 89,92
Justify-self......ccccoeviiiiiiinniinnn, 96
L

LinK. oo 58
M
MiINmaXx....c.cccevveeeeeeneenieenieeene 68
0]

Order......uuueeeeeeeiieeeienieeeennn, 70,177
R

Repeat....ccccvvviieeiiieiieiiieee, 35
S

SPAN..ceiiiiiieieeeee e 45
\Y



	Couverture
	Page de titre
	Copyright
	Avant-propos
	Table des matières
	Partie 1. CSS-Grid
	Chapitre 1
	Présentation de grid
	1.1. Introduction
	1.2. Comment est constituée la grille
	1.3. Le display grid et le display inline-grid
	1.4. Conclusion de ce chapitre


	Chapitre 2
	Le conteneur et ses propriétés
	2.1. Mise en place du conteneur et des contenus
	2.2. Un contenu peut devenir un conteneur
	2.3. Création de colonnes
	2.4. Gestion de la hauteur des lignes
	2.5. Les gouttières
	2.6. Une nouvelle unité de mesure
	2.7. La fonction repeat


	Chapitre 3
	Les contenus et leurs prop
	3.1. Les lignes de grille verticale
	3.2. Les lignes de grille horizontale
	3.3. Le mot-clé span
	3.4. Propriétés raccourcies


	Chapitre 4
	Autres propriétés
	4.1. Changer le sens d'affichage
	4.2. Créer une colonne virtuelle
	4.3. Créer une ligne virtuelle
	4.4. Application aux balises HTML5
	4.5. Définition des zones
	4.6. La fonction minmax
	4.7. La propriété order


	Chapitre 5
	Déplacement des contenus
	5.1. Présentation
	5.2. Alignement de la grille sur l'axe horizontal
	5.3. Alignement de la grille sur l'axe vertical
	5.4. Alignement de tous les contenus
	5.5. Alignement d'un contenu


	Chapitre 6
	Création d'une maquette d'un site responsive
	6.1. Présentation du travail
	6.2. Mise en place des bases du travail
	6.3. CSS côté smartphone
	6.4. CSS côté ordinateur
	6.5. Conclusion



	Partie 2. Flexbox
	Chapitre 7
	Le display flex
	7.1. Mise en place de nos documents de base
	7.2. Déclarer du flex dans notre code CSS
	7.3. Deux possibilités flex ou inline-flex
	7.4. La largeur des contenus
	7.5. Modifions le style par défaut


	Chapitre 8
	La différence entre flex et inline-flex
	8.1. La propriété display
	8.2. Plusieurs conteneurs flex
	8.3. Plusieurs conteneurs inline-flex
	8.4. Conclusion de ce chapitre


	Chapitre 9
	Définir la direction des contenus
	9.1. Une propriété CSS liée à la direction
	9.2. Diriger nos contenus en ligne
	9.3. Diriger nos contenus en colonne
	9.4. Diriger nos contenus en ligne inversée
	9.5. Diriger nos contenus en colonne inversée
	9.6. Conclusion


	Chapitre 10
	Le retour à la ligne
	10.1. Une propriété CSS liée au retour à la ligne
	10.2. Empêcher le retour à la ligne des contenus
	10.3. Autoriser le retour à la ligne des contenus
	10.4. Autoriser le retour à la ligne inversé des contenus
	10.5. Une propriété réunissant deux propriétés
	10.6. Conclusion


	Chapitre 11
	L'axe principal et l'axe secondaire
	11.1. La notion d'axe
	11.2. Alignement sur l'axe principal
	11.3. Alignement horizontal
	11.4. Alignement vertical
	11.5. Récapitulatif de ce que nous savons
	11.6. Alignement sur l'axe secondaire
	11.7. Inversion de l'axe principal
	11.8. Alignement d'un contenu particulier
	11.9. Alignement de plusieurs lignes ou colonnes
	11.10. Conclusion


	Chapitre 12
	Manipulation des contenus
	12.1. Gérer les ordres d'affichage
	12.2. Augmenter la largeur d'un contenu
	12.3. Diminuer ou définir la largeur d'un contenu
	12.4. La super propriété flex
	12.5. Conclusion


	Chapitre 13
	Création d'une maquette
	13.1. Présentation du travail
	13.2. Première partie
	13.3. Deuxième partie
	13.4. Conclusion



	Partie 3. Grid & flexbox ensemble
	Chapitre 14
	Utiliser grid & flexbox ensemble
	14.1. Le principe de base
	14.2. Le HTML 5
	14.3. Les principes de base de grid
	14.4. Le principe des media queries
	14.5. Le viewport
	14.6. Mise en place du responsive
	14.7. Les principes de base de flexbox



	Index lexical


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




