

Sass (Syntactically Awesome Stylesheets)
Sass est un pré processeur qu’on retrouve régulièrement dans les projets. Un préprocesseur
est un programme qui procède à des transformations sur un code source, avant l'étape de
traduction proprement dite (compilation ou interprétation).

Sass by Romain Van-Damme 2020

À quoi cela sert-il ?
Il permet d’apporter une modularité aux feuilles de style CSS en plus d’apporter certaines
fonctionnalités supplémentaires permettant aux développeurs d’avoir plus de flexibilité.

Attention​, il n’ajoute pas de nouvelles fonctionnalités qui ne serait pas possible de faire en
CSS “vanilla”.

Les fonctionnalités
- Opérateurs​ : Permet de faire des calculs en CSS.
- Variables​ : Comme en programmation, permet de stocker des valeurs comme des

couleurs, tailles, etc.
- Nesting​ : C’est une notion d’imbrication qui permet d’ajouter une forme “modulaire”

sur l’utilisation du CSS, couplé avec une méthodologie comme ​BEM​, cela facilite le
travail en groupe.

- Mixins​ : Écrire des morceaux de code réutilisables.
- Fonctions​ : Permet d’écrire des fonctions qui pourront retourner une valeur.
- Extends​ : Utilisation du système d’héritage pour étendre les propriétés d’un élément.
- Conditions​ : La possibilité d'utiliser des conditions comme le : ​if​, ​each​, ​for​, ​while.

Exemple

Opérateurs
Un “opérateur” est un signe ou un mot qui permet de réaliser une opération. Il existe des
opérateurs de différents types qui permettent d’effectuer des types d’opérations différentes :
opérateurs arithmétiques, opérateurs logiques, opérateurs de concaténation, etc.

Sass by Romain Van-Damme 2020

Les opérateurs de concaténation Sass

Les opérateurs arithmétiques Sass

Les opérateurs de comparaison Sass

Les opérateurs de comparaison nous permettent de comparer différentes valeurs entre
elles.

Sass by Romain Van-Damme 2020

Les opérateurs logiques Sass

Les opérateurs logiques sont des opérateurs qui vont principalement être utilisés au sein de
conditions. Ils vont nous permettre de créer des tests plus robustes.

Sass supporte trois opérateurs logiques : ​and​, ​or ​et ​not​.

Parfois, nos conditions et boucles vont utiliser plusieurs opérateurs ensemble (notamment
dans le cas où des opérateurs logiques sont impliqués).

Sass a un ordre de priorité assez standard. Les opérateurs vont être traités dans l’ordre
suivant (du plus prioritaire ou moins prioritaire) :

1. Les opérateurs ​not​ et de concaténation ​+, -​, et​ / ;
2. Les opérateurs arithmétiques ​*, / et %​ ;
3. Les opérateurs arithmétiques ​+ et - ​;
4. Les opérateurs​ >, <, >=, <= ​;
5. Les opérateurs​ == ​et ​!=​ ;
6. L’opérateur ​and​ ;
7. L’opérateur ​or​.

Variables
Une variable Sass est un conteneur pour une valeur. L’idée est de lier un nom à une valeur
puis d’utiliser ensuite ce nom à la place de la valeur dans le code. Le nom utilisé sera
ensuite converti automatiquement en la valeur à laquelle il est lié.

Sass vs CSS
Les variables Sass sont différentes des variables ou “propriétés personnalisées (“custom
properties”) CSS et s’utilisent différemment :

● Les variables Sass sont toutes compilées par Sass. Les variables CSS sont incluses
dans la sortie CSS.

● Les variables CSS peuvent avoir différentes valeurs pour différents éléments, mais
les variables Sass n’ont qu’une valeur à la fois.

● Les variables Sass sont impératives, ce qui signifie que si vous utilisez une variable
puis modifiez sa valeur, l’utilisation antérieure restera la même. Les variables CSS
sont déclaratives, ce qui signifie que si vous modifiez la valeur, cela affectera les
utilisations antérieures et ultérieures.

Sass by Romain Van-Damme 2020

Illustration de l’utilisation d’une variable et du code généré en CSS après compilation

Scope
Les variables déclarées au niveau supérieur d'une feuille de style sont ​globales​. Cela
signifie qu'ils peuvent être consultés n'importe où dans leur module après avoir été déclarés.
Mais ce n’est pas vrai pour toutes les variables.

Celles déclarées dans des blocs (accolades en SCSS ou code en retrait dans Sass) sont
généralement locales et ne sont accessibles que dans le bloc auquel elles ont été déclarées.

Shadowing

Les variables locales peuvent même être déclarées avec le même nom qu'une variable
globale. Si cela se produit, il existe en fait deux variables différentes portant le même nom :
une ​locale​ et une ​globale​.

Cela permet de garantir qu'un auteur écrivant une variable locale ne modifie pas
accidentellement la valeur d'une variable globale dont il n'a même pas connaissance.

Sass by Romain Van-Damme 2020

Si vous devez définir la valeur d'une variable globale à partir d'une portée locale (comme
dans un mixin), vous pouvez utiliser l'indicateur ​!global.

Une déclaration de variable marquée comme ​!global ​sera toujours affectée à la portée
globale.

Flow Control Scope

Les variables déclarées dans les règles de contrôle de flux ont des règles d’étendue
spéciales : On ne déclare pas une variable locale.
Au lieu de cela, on attribue simplement une valeur à ces variables. Cela facilite beaucoup
l'affectation conditionnelle d'une valeur à une variable ou la création d'une valeur dans le
cadre d'une boucle.

Sass by Romain Van-Damme 2020

Nesting
Lors de l'écriture de HTML, vous avez probablement remarqué qu'il a une hiérarchie claire
imbriquée et visuelle. CSS, d'autre part, ne le fait pas.

Sass vous permettra d'imbriquer vos sélecteurs CSS d'une manière qui suit la même
hiérarchie visuelle de votre HTML. Sachez que des règles trop imbriquées entraîneront une
CSS trop qualifiée qui pourrait s'avérer difficile à maintenir et est généralement considérée
comme une mauvaise pratique.

Dans cet esprit, voici un exemple de quelques styles typiques pour la navigation d'un site :

Vous remarquerez que les sélecteurs ​ul​, ​li​ et ​a​ sont imbriqués dans le sélecteur de
navigation. C'est un excellent moyen d'organiser votre CSS et de le rendre plus lisible.

Pour aller plus loin, utilisé une méthodologie comme ​BEM ​ou ​SMACSS ​par exemple​ ​pour
plus de modularité.

Mixins
Certaines choses en CSS sont un peu fastidieuses à écrire, en particulier avec CSS3 et les
nombreux préfixes de fournisseurs qui existent.

Un mixin vous permet de créer des groupes de déclarations CSS que vous souhaitez
réutiliser​ sur l'ensemble de votre site.

Vous pouvez même transmettre des valeurs pour rendre votre mixin plus flexible.

Sass by Romain Van-Damme 2020

Voici un exemple de transformation.

Pour créer un mixin, utilisez la directive​ ​@mixin​ ​et donnez-lui un nom. Nous avons nommé
notre transformation mixin.

Nous utilisons également la variable ​$property​ entre parenthèses afin de pouvoir transmettre
une transformation de ce que nous voulons.

Après avoir créé votre mixin, vous pouvez ensuite l'utiliser comme déclaration CSS
commençant par ​@include​ suivi du nom du mixin.

Functions

Les fonctions vous permettent de définir des opérations complexes sur les valeurs
SassScript que vous pouvez réutiliser dans votre feuille de style. Ils facilitent l'abstraction
des formules et des comportements courants de manière lisible.

Les fonctions sont définies à l'aide de la ​@function​. Elle est écrite ​@function​ <name>
(<arguments ...>) {...}.
Le nom d’une fonction peut être n’importe quel identifiant Sass.

Il ne peut contenir que des instructions universelles, ainsi que la règle ​@return​ qui indique
la valeur à utiliser comme résultat de l'appel de fonction.
Les fonctions sont appelées à l'aide de la syntaxe de fonction CSS normale.

Sass by Romain Van-Damme 2020

Extends/Inheritance

C'est l'une des fonctionnalités les plus utiles de Sass. L'utilisation de ​@extend ​vous permet
de partager un ensemble de propriétés CSS d'un sélecteur à un autre. Cela aide à garder
votre Sass très “clean”.

Dans notre exemple, nous allons créer une simple série de messages pour les erreurs, les
avertissements et les réussites en utilisant une autre fonctionnalité qui va de pair avec les
classes étendues et substituables.

Une classe d'espace réservé est un type spécial de classe qui ne s'imprime que lorsqu'elle
est étendue et peut vous aider à garder votre CSS compilé propre et net.

Sass by Romain Van-Damme 2020

Le code ci-dessus indique à ​.message​, ​.success​, ​.error​ et ​.warning​ ​de se comporter
exactement comme ​%message-shared​. Cela signifie que toute classe où ​%message-shared
apparaîtra, aura les propriétés suivantes :

border : 1px solid #ccc;

padding : 10px;

color : #333;

La magie opère dans le CSS généré, où chacune de ces classes obtiendra les mêmes
propriétés CSS que ​%message-shared​. Cela vous évite d'avoir à écrire plusieurs noms de
classe sur des éléments HTML.

Vous pouvez ​étendre ​la plupart des sélecteurs CSS simples en plus des classes d'espace
réservé dans Sass, mais l'utilisation d'espaces réservés est le moyen le plus simple de vous
assurer de ne pas étendre une classe imbriquée ailleurs dans vos styles, ce qui peut
entraîner des sélecteurs involontaires dans votre CSS.

Notez que le CSS en ​%equal-heigts​ n'est pas généré, car ​%equal-heigts ​n'est jamais
étendu.

Conditions (Flow Control)

@If, @else
La règle ​@if​ est écrite ​@if ​<expression> {...}, et elle contrôle si son bloc est évalué ou non (y
compris l'émission de styles au format CSS). L’expression renvoie généralement ​true ​ou
false ​: si l’expression renvoie vrai, le bloc est évalué et si l’expression renvoie faux, ce n’est
pas le cas.

Sass by Romain Van-Damme 2020

Une règle ​@if​ peut éventuellement être suivie d'une règle ​@else​, écrite ​@else​ {...}. Le bloc
de cette règle est évalué si l'expression ​@if​ renvoie ​false​.

Sass by Romain Van-Damme 2020

@each

La règle ​@each​ facilite l'émission de styles ou l'évaluation du code pour chaque élément
d'une liste.
C'est génial pour les styles répétitifs qui n'ont que quelques variations entre eux. Il est
généralement écrit ​@each​ <variable> dans <expression> {...}, où l'expression renvoie une
liste.
Le bloc est évalué tour à tour pour chaque élément de la liste, qui est affecté au nom de
variable donné.

Vous pouvez également utiliser ​@each​ pour parcourir chaque paire clé / valeur dans un
tableau associatif, en l'écrivant ​@each​ <variable>, <variable> dans <expression> {...}. La clé
est affectée au premier nom de variable et l'élément est affecté au second.

Sass by Romain Van-Damme 2020

Si vous avez une liste de listes, vous pouvez utiliser ​@each ​pour attribuer automatiquement
des variables à chacune des valeurs des listes internes en l'écrivant ​@each​ <variable ...>
dans <expression> {...}.
C'est ce qu'on appelle la ​déstructuration​, car les variables correspondent à la structure des
listes internes. Chaque nom de variable est attribué à la valeur à la position correspondante
dans la liste, ou nul si la liste ne contient pas suffisamment de valeurs.

Sass by Romain Van-Damme 2020

@for
La règle ​@for​, écrite ​@for​ <variable> de <expression> à <expression> {...} ou ​@for
<variable> de <expression> à <expression> {...}, compte vers le haut ou vers le bas à partir
d'un nombre (le résultat de la première expression) à un autre (le résultat de la seconde) et
évalue un bloc pour chaque nombre entre les deux.

Chaque numéro en cours de route est affecté au nom de variable donné.

@while
La règle ​@while​, écrite ​@while​ <expression> {...}, évalue son bloc si son expression renvoie
true​. Ensuite, si son expression renvoie toujours vrai, il évalue à nouveau son bloc. Cela
continue jusqu'à ce que l'expression renvoie finalement ​false​.

Sass by Romain Van-Damme 2020

Module
Vous n'êtes pas obligé d'écrire tous vos règles Sass dans un seul fichier. Vous pouvez le
diviser comme vous le souhaitez avec la règle ​@use​.

Cette règle charge un autre fichier Sass en tant que module, ce qui signifie que vous pouvez
faire référence à ses variables, ​mixins ​et ​fonctions ​dans votre fichier Sass avec un espace
de noms basé sur le nom de fichier.
L'utilisation d'un fichier inclura également le CSS qu'il génère dans votre sortie compilée !

Notez que nous utilisons ​@use​ ​'base'; ​dans le fichier ​styles.scss​. Lorsque vous utilisez un
fichier, vous n'avez pas besoin d'inclure l'extension de fichier. Sass est intelligent et le
découvrira pour vous.

Sass by Romain Van-Damme 2020

Installation

Pour exécuter Sass en global (recommandé), vous devez avoir installé Ruby sur votre
système. Sur les nouvelles versions de Linux et OSX, Ruby est déjà préinstallée.

Pour l’installer avec le gestionnaire chocolatey pour windows :

choco install ruby

Pour linux sous Ubuntu/Debian :

$ sudo apt-get install ruby-full

Pour macOS avec le gestionnaire homebrew

$ brew install ruby

Vous pouvez sinon à partir du ​Github​, télécharger le dossier Dart Sass et l’importer
directement dans votre projet, et grâce à une ligne de commande, lancer la compilation
du/des fichier(s) en direction d’un ​résultat​. Lancer un ​watcher​ (veilleur) qui vérifiera
chaque changement apporté au fichier ​.scss

Soit vous l’installez en globale, et vous pouvez vous en servir pour tous vos projets.
Soit vous l’installer en locale, mais vous devrez le réinstaller pour un nouveau projet.

Exemple de commande qui permet de lancer sass à partir du dossier dart-sass

./dart-sass/sass sass/style.scss style.css

La première partie correspond au fait qu’on se place dans le dossier dart-sass contenant le
fichier qui permet de lancer des lignes de commandes.

La deuxième partie indique que Sass doit compiler dans le dossier ​sass ​le fichier ​sass
style.scss​ en fichier ​style.css​ (​résultat​). Regardez bien les extensions.

Pour éviter d’avoir à retaper la commande à chaque changement sur le fichier ​.scss ​afin de
compiler, vous avez la possibilité d’établir ce qu’on appelle un “watcher”, qui va vérifier
chaque changement à la volée.

./dart-sass/sass sass/style.scss style.css --watch

Sass by Romain Van-Damme 2020

https://github.com/sass/dart-sass/releases/tag/1.26.10

Installer n'importe où (autonome)
Je vous recommande de regarder la documentation officielle, pour être sûr d’être à jour.

Avec le gestionnaire de packages npm (fonctionne sur tous les systèmes) :

npm install -g sass

Avec chocolatey (windows)

choco install sass

Homebrew (macOS)

brew install sass/sass/sass

Pour l'exécuter

En ligne de commande :

sass --watch input.scss output.css

Donc le ​input.scss​ c’est le fichier qu’on modifie et que Sass va se charger de compiler en
fichier ​output.css

Pour prendre le input dans un dossier spécifique et le mettre dans un autre dossier, nous
pouvons utiliser cette commande

sass --watch app/sass:​public​/stylesheets

On remarque que l’extension n’est pas spécifié ici, Sass comprend automatiquement que la
première partie avant le​ : ​correspond au fichier à compiler, et la deuxième partie au fichier
transformé (output).

IDE
Les IDE moderne intègrent souvent des “addons” capable de faire tourner sass sans ligne
de commande :

- PhpStorm
- Visual studio code
- Atom
- Autres...

Sass by Romain Van-Damme 2020

Task Runner
Une autre possibilité souvent utilisée en entreprise, c’est l’utilisation des “task runner”. Ces
outils permettent d’automatiser des tâches comme la compilation de fichier ​.scss​ en ​.css

- Webpack
- Gulp
- Grunt

L'inconvénient c’est que la première configuration de ce genre d’outil est ​difficile ​et ​longue
lorsqu’on est débutant, surtout pour webpack. Je recommande vivement de d’abord
commencé par l’utilisation d’une ligne de commande ​ou ​avec un addon d’IDE.

À savoir
L'extension ​.SASS​ correspond à la syntaxe originale de Sass. Elle fonctionne sans ​;​ et ​{}
uniquement à l’indentation, elle est néanmoins difficile à relire lors de gros projet.

Du coup une autre syntax est apparue, celle qui correspond à l’extension ​.scss​ qui signifie
Sassy CSS​ elle a été adopté par la grande majorité des développeurs car on y retrouve la
syntaxe de base comme en CSS avec les avantages du Sass.

Sass ou Less
SASS et LESS, les deux permettent l’utilisation de variables. La différence clé entre SASS et
LESS, est que SASS est basé sur Ruby, alors que LESS utilise JavaScript.

Même cela ne donne à aucun des pré-processeurs un avantage sur l’autre. SASS est
beaucoup plus populaire.

Mais cela pourrait être dû au fait que SASS est un peu plus âgé. À l’origine, LESS était pris
en charge par le framework front-end réputé Bootstrap, qui reposait sur le préprocesseur le
plus récent. Mais avec la version 4, le projet a officiellement basculé vers SASS, ce qui a
encore renforcé la popularité de SASS. (​Source​)

Sass by Romain Van-Damme 2020

https://waytolearnx.com/2019/04/difference-entre-sass-et-less.html

Pour en savoir plus…
Voici donc quelques liens utile :

- https://sass-lang.com/documentation/at-rules/css
- https://www.alsacreations.com/article/lire/1717-les-preprocesseurs-css-c-est-sensass

.html
- https://waytolearnx.com/2019/04/difference-entre-sass-et-less.html
- https://www.youtube.com/watch?v=MOstrhqpIsI
- https://fr.wikipedia.org/wiki/Pr%C3%A9processeur_CSS

Sass by Romain Van-Damme 2020

https://sass-lang.com/documentation/at-rules/css
https://www.alsacreations.com/article/lire/1717-les-preprocesseurs-css-c-est-sensass.html
https://www.alsacreations.com/article/lire/1717-les-preprocesseurs-css-c-est-sensass.html
https://waytolearnx.com/2019/04/difference-entre-sass-et-less.html
https://www.youtube.com/watch?v=MOstrhqpIsI
https://fr.wikipedia.org/wiki/Pr%C3%A9processeur_CSS

