Sass (Syntactically Awesome Stylesheets)

Sass est un pré processeur qu’on retrouve régulierement dans les projets. Un préprocesseur
est un programme qui procéde a des transformations sur un code source, avant I'étape de

traduction proprement dite (compilation ou interprétation).
/—/

R .
B

/ Ne ®

./7

Sass by Romain Van-Damme 2020

A quoi cela sert-il ?

Il permet d’apporter une modularité aux feuilles de style CSS en plus d’apporter certaines
fonctionnalités supplémentaires permettant aux développeurs d’avoir plus de flexibilité.

Attention, il n’ajoute pas de nouvelles fonctionnalités qui ne serait pas possible de faire en
CSS “vanilla”.

Les fonctionnalités

- Opérateurs : Permet de faire des calculs en CSS.

- Variables : Comme en programmation, permet de stocker des valeurs comme des
couleurs, tailles, etc.

- Nesting : C’est une notion d'imbrication qui permet d’ajouter une forme “modulaire”
sur l'utilisation du CSS, couplé avec une méthodologie comme BEM, cela facilite le
travail en groupe.

- Mixins : Ecrire des morceaux de code réutilisables.

- Fonctions : Permet d’écrire des fonctions qui pourront retourner une valeur.

- Extends : Utilisation du systéme d’héritage pour étendre les propriétés d’'un élément.

- Conditions : La possibilité d'utiliser des conditions comme le : if, each, for, while.

Exemple

Opérateurs

Un “opérateur” est un signe ou un mot qui permet de réaliser une opération. Il existe des
opérateurs de différents types qui permettent d’effectuer des types d’opérations différentes :
opérateurs arithmétiques, opérateurs logiques, opérateurs de concaténation, etc.

Sass by Romain Van-Damme 2020

Les opérateurs de concaténation Sass

Opérateur Description

Retourne une chaine qui contient les deux expressions de depart
concatenees

Retourne une chaine qui contient les deux expressions de départ

concaténées et séparees par

Retourne une chaine qui contient les deux expressions de départ
concaténées et séparées par /"

Les opérateurs arithmétiques Sass

Opérateur Nom de I'opération associée
+ Addition

- Soustraction

Multiplication

f Division

% Modulo (reste d'une division euclidienne)

Les opérateurs de comparaison Sass

Les opérateurs de comparaison nous permettent de comparer différentes valeurs entre
elles.

Opérateur Définition

Permet de tester ['égalité sur les valeurs (renvoie true si les valeurs
sont égales)

Permet de tester la différence des valeurs (renvoie true si les
valeurs sont différentes)

Permet de tester si une valeur est strictement inférieure a une
autre

Permet de tester si une valeur est stricterment supérieure & une
autre

== Permet de tester si une valeur est inférieure ou égale a une autre

== Permet de tester si une valeur est supérieure ou égale 3 une autre

Les opérateurs logiques Sass

Les opérateurs logiques sont des opérateurs qui vont principalement étre utilisés au sein de
conditions. lls vont nous permettre de créer des tests plus robustes.

Sass supporte trois opérateurs logiques : and, or et not.

Parfois, nos conditions et boucles vont utiliser plusieurs opérateurs ensemble (notamment
dans le cas ou des opérateurs logiques sont impliqués).

Sass a un ordre de priorité assez standard. Les opérateurs vont étre traités dans 'ordre
suivant (du plus prioritaire ou moins prioritaire) :
1. Les opérateurs not et de concaténation +, -,et / ;

2. Les opérateurs arithmétiques *, / et %;
3. Les opérateurs arithmétiques + et - ;
4. Lesopérateurs >, <, >=, <= ;
5. Les opérateurs == et |=;
6. L'opérateur and ;
7. L’opérateur or.
Variables

Une variable Sass est un conteneur pour une valeur. L’idée est de lier un nom a une valeur
puis d’utiliser ensuite ce nom a la place de la valeur dans le code. Le nom utilisé sera
ensuite converti automatiquement en la valeur a laquelle il est lié.

Sass vs CSS

Les variables Sass sont différentes des variables ou “propriétés personnalisées (“custom
properties”) CSS et s’utilisent difféeremment :
® |es variables Sass sont toutes compilées par Sass. Les variables CSS sont incluses
dans la sortie CSS.
® |es variables CSS peuvent avoir différentes valeurs pour différents éléments, mais
les variables Sass n’ont qu’une valeur a la fois.
® |es variables Sass sont impératives, ce qui signifie que si vous utilisez une variable
puis modifiez sa valeur, I'utilisation antérieure restera la méme. Les variables CSS
sont déclaratives, ce qui signifie que si vous modifiez la valeur, cela affectera les
utilisations antérieures et ultérieures.

Sass by Romain Van-Damme 2020

lllustration de I'utilisation d’une variable et du code généré en CSS apres compilation

193]
o
%]
(%4
[¥2]
a1}
%
w
(o]
(%3]
1

Sbase-color: #cB538c; .alert {
Sborder-dark: rgba(Sbase-color, ©.88); border: 1px solid rgba(198, 83, 148, 9.88);
.alert {

border: 1px solid Sborder-dark;

Scope

Les variables déclarées au niveau supérieur d'une feuille de style sont globales. Cela
signifie qu'ils peuvent étre consultés n'importe ou dans leur module aprés avoir été déclarés.
Mais ce n’est pas vrai pour toutes les variables.

Celles déclarées dans des blocs (accolades en SCSS ou code en retrait dans Sass) sont
généralement locales et ne sont accessibles que dans le bloc auquel elles ont été déclarées.

5C55 Sass C55
Sglobal-variable: global value; .content {
global: global walue;
.content { local: local value;

led

$local-variable: local walue;
global: Sglobal-variable;
local: Sleocal-wvariable; .Sidebar {

global: global walue;

.sidebar {
global: Sglobal-variable;

S o wresd e T -~ 7 } i e T e 7 - [S R S = § o e o R
/ This would fail, because Slocal-variable isn’'t in scope:

I Py I T Ny R T
tocal. procal-variaole,

Shadowing

Les variables locales peuvent méme étre déclarées avec le méme nom qu'une variable
globale. Si cela se produit, il existe en fait deux variables différentes portant le méme nom :
une locale et une globale.

Cela permet de garantir qu'un auteur écrivant une variable locale ne modifie pas
accidentellement la valeur d'une variable globale dont il n'a méme pas connaissance.

Sass by Romain Van-Damme 2020

7]
(5]
[%:]
w
4]
)
w
%
]
[%]
]

Svariable: global value; .content {
value: local wvalue;
.content {
S$variable: local value;
value: Svariable; .sidebar {
i value: glebal value;

.sidebar {
value: Svariable;

Si vous devez définir la valeur d'une variable globale a partir d'une portée locale (comme
dans un mixin), vous pouvez utiliser l'indicateur !global.

Une déclaration de variable marquée comme !global sera toujours affectée a la portée

globale.
SCSS Sass CSs
Svariable: first global value; .content {
value: second global value;
.content { 1

Svariable: second global wvalue !global;
value: Svariable; .sidebar {
value: second global value;

.Sidebar {
value: Svariable;

Flow Control Scope

Les variables déclarées dans les régles de contréle de flux ont des régles d’étendue
spéciales : On ne déclare pas une variable locale.

Au lieu de cela, on attribue simplement une valeur a ces variables. Cela facilite beaucoup
I'affectation conditionnelle d'une valeur a une variable ou la création d'une valeur dans le
cadre d'une boucle.

5CSS Sass css
Sdark-theme: true l!default; .button {
Sprimary-color: #f8bbde ldefault; background-color: #7508c¢30;
Saccent-color: #6alb%a !default; border: 1px solid #f5ebfc;
border-radius: 3px;
@if Sdark-theme { i

Sprimary-color: darken(Sprimary-color, 60%);
Saccent-color: lighten(5accent-color, 68%);

.button {
background-color: 5primary-colors;
border: 1px solid $accent-color;
border-radius: 3px;

el

Nesting

Lors de I'écriture de HTML, vous avez probablement remarqué qu'il a une hiérarchie claire
imbriquée et visuelle. CSS, d'autre part, ne le fait pas.

Sass vous permettra d'imbriquer vos sélecteurs CSS d'une maniére qui suit la méme
hiérarchie visuelle de votre HTML. Sachez que des régles trop imbriquées entraineront une
CSS trop qualifiée qui pourrait s'avérer difficile a maintenir et est généralement considérée
comme une mauvaise pratique.

Dans cet esprit, voici un exemple de quelques styles typiques pour la navigation d'un site :

Sass CSS
nav ul {
margin: ©;
margin: @; padding: ©;

padding: @; List-style: ncone;
list-style: none; 2

nav 13 {
display: inline-block;

1i { display: inline-block; }

2

o

nav a {
display: block;

display: block; padding: 6px 12px;

i

padding: 6px 12px; text-decoration: none;
text-decoration: none;]

Vous remarquerez que les sélecteurs ul, 1i et a sont imbriqués dans le sélecteur de
navigation. C'est un excellent moyen d'organiser votre CSS et de le rendre plus lisible.

Pour aller plus loin, utilisé une méthodologie comme BEM ou SMACSS par exemple pour
plus de modularité.

Mixins
Certaines choses en CSS sont un peu fastidieuses a écrire, en particulier avec CSS3 et les
nombreux préfixes de fournisseurs qui existent.

Un mixin vous permet de créer des groupes de déclarations CSS que vous souhaitez
réutiliser sur I'ensemble de votre site.

Vous pouvez méme transmettre des valeurs pour rendre votre mixin plus flexible.

Sass by Romain Van-Damme 2020

9]

[%;]

Voici un exemple de transformation.

55 Sass CSsS

@mixin transform(Sproperty) { .box {
—webkit-transform: Sproperty; -webkit-transform: rotate(3@deg);
-ms-transform: Sproperty; -ms—-transform: rotate(38deg);

transform: Sproperty; transform: rotate(30deg);

.box { @include transform({rotate(3@deg)); }

Pour créer un mixin, utilisez la directive @mixin et donnez-lui un nom. Nous avons hommé
notre transformation mixin.

Nous utilisons également la variable $property entre parenthéses afin de pouvoir transmettre
une transformation de ce que nous voulons.

Apreés avoir créé votre mixin, vous pouvez ensuite l'utiliser comme déclaration CSS
commencant par @include suivi du nom du mixin.

Functions

Les fonctions vous permettent de définir des opérations complexes sur les valeurs
SassScript que vous pouvez réutiliser dans votre feuille de style. lls facilitent I'abstraction
des formules et des comportements courants de maniére lisible.

Les fonctions sont définies a 'aide de la @function. Elle est écrite @function <name>
(<arguments ...>) {...}.
Le nom d’une fonction peut étre n'importe quel identifiant Sass.

Il ne peut contenir que des instructions universelles, ainsi que la régle @return qui indique
la valeur a utiliser comme résultat de I'appel de fonction.
Les fonctions sont appelées a l'aide de la syntaxe de fonction CSS normale.

SS Sass css
@function pow($base, Sexponent) { .sidebar {
Sresult: 1; float: left;

@for 5_ from 1 through Sexponent { margin-left: 64px;
Sresult: Sresult * Sbase; 1

5

g

@return Sresult;

.sidebar {
float: left;
margin-left: pow(4, 32) * lpx;

Sass by Romain Van-Damme 2020

Extends/Inheritance

C'est I'une des fonctionnalités les plus utiles de Sass. L'utilisation de @extend vous permet
de partager un ensemble de propriétés CSS d'un sélecteur a un autre. Cela aide a garder
votre Sass trés “clean”.

Dans notre exemple, nous allons créer une simple série de messages pour les erreurs, les
avertissements et les réussites en utilisant une autre fonctionnalité qui va de pair avec les
classes étendues et substituables.

Une classe d'espace réservé est un type spécial de classe qui ne s'imprime que lorsqu'elle
est étendue et peut vous aider a garder votre CSS compilé propre et net.

SCS55 Sass =— CSS
/% This €SS will print because Smessage-shared is extended. #/
¥message-shared
border: 1px solid #ccc;
padding: 18px;

color: #333;

A/ This €55 won't print because %equal-heights is never extended.
%egual-heights {

display: flex;

flex-wrap: wrap;

.message {
@extend %message-shared;

.success |
o St
Rextend “message-shared;
border-color: green;

.error {
o Gl A=
@extend ¥message-shared;
border-color: red;

warning {
@extend %message-shared;
border-color: yellow;

Sass by Romain Van-Damme 2020

(%)

Le code ci-dessus indique a .message, .success, .error et .warning de se comporter
exactement comme %message-shared. Cela signifie que toute classe ou %message-shared
apparaitra, aura les propriétés suivantes :

border : 1px solid #ccc;
padding : 10px;
color : #333;

La magie opére dans le CSS généré, ou chacune de ces classes obtiendra les mémes
propriétés CSS que %message-shared. Cela vous évite d'avoir a écrire plusieurs noms de
classe sur des éléments HTML.

Vous pouvez étendre la plupart des sélecteurs CSS simples en plus des classes d'espace
réservé dans Sass, mais |'utilisation d'espaces réservés est le moyen le plus simple de vous
assurer de ne pas étendre une classe imbriquée ailleurs dans vos styles, ce qui peut
entrainer des sélecteurs involontaires dans votre CSS.

Notez que le CSS en %equal-heigts n'est pas génére, car %equal-heigts n'est jamais
étendu.

Conditions (Flow Control)

@If, @else

La regle @if est écrite @if <expression> {...}, et elle contrble si son bloc est évalué ou non (y
compris I'émission de styles au format CSS). L’expression renvoie généralement true ou
false : si 'expression renvoie vrai, le bloc est évalué et si I'expression renvoie faux, ce n’est
pas le cas.

55 Sass Css
@mixin avatar(5size, Scircle: false) { .square-av {
width: S5size; width: 168px;
height: Sszize; height: leepx;
@if Scircle {
border-radius: 5size [2; .circle-av {

i

width: 10@px;
height: 188px;
border-radius: 58px;

.square-av { @include avatar(18@px, Scircle: false);

.circle-av { @include avatar (188px, Scircle: true);

Sass by Romain Van-Damme 2020

Une régle @if peut éventuellement étre suivie d'une régle @else, écrite @else {...}. Le bloc
de cette regle est évalué si I'expression @if renvoie false.

SCss Sass Css
Slight-background: #f2ece4; .banner {
Slight-text: #036; background-color: #f2eced;
Sdark-background: #6b717f; color: #036;
Sdark-text: #d2Zeldd; 1
body.dark .banner {
@mixin theme-colors(51light-theme: true) { background-color: #6b717f;
@if slight-theme { color: #d2eldd;

et

background-coler: 5light-background;
color: 5light-—text;

I @else {
background-color: S5dark-background;
color: Sdark-text;

T
3
.banner {
@include theme-colors(5light-theme: true);
body.dark & {
@include theme-colors{slight-theme: false);
E
¥

Sass by Romain Van-Damme 2020

@each

La regle @each facilite I'émission de styles ou I'évaluation du code pour chaque élément

d'une liste.

C'est génial pour les styles répétitifs qui n'ont que quelques variations entre eux. Il est
généralement écrit @each <variable> dans <expression> {...}, ou l'expression renvoie une

liste.

Le bloc est évalué tour a tour pour chaque élément de la liste, qui est affecté au nom de

variable donné.

SCS5 Sass

Ssizes: 40px, 50px, 88px;

@each $size in 5sizes [
dcon-#{557zel |
font-size: 5size;
height: S$size;
width: S$size;

fd

)
[55)
w

.icon-48px {
font-size: 4@px;
height: 4@px;
width: 40px;

.icon-50px {
font-size: 50px;
height: 5@px;
width: 50px;

.icon-80px {
font-size: 80px;
height: 8@px;
width: 88@px;

Vous pouvez également utiliser @each pour parcourir chaque paire clé / valeur dans un
tableau associatif, en I'écrivant @each <variable>, <variable> dans <expression> {...}. La clé
est affectée au premier nom de variable et I'élément est affecté au second.

@each Sname, S5glyph in Sicons {
dcon-#{5namel :before {
display: inline-block;
font-family: "Icon Font";
content: $glyph;

Ll

C55

top™: "\fI1zf'"); @charset "UTF-8";

.icon-eye:before {
display: inline-block;
font-family: "Icon Font";
content: "O";

.icon-start:before {
display: inline-block;
font-family: "Icon Font";
content: "O";

.icon-stop:before {
display: inline-block;
font-family: "Icon Font";
content: "O";

Si vous avez une liste de listes, vous pouvez utiliser @each pour attribuer automatiquement
des variables a chacune des valeurs des listes internes en I'écrivant @each <variable ...>
dans <expression> {...}.

C'est ce qu'on appelle la déstructuration, car les variables correspondent a la structure des
listes internes. Chaque nom de variable est attribué a la valeur a la position correspondante
dans la liste, ou nul si la liste ne contient pas suffisamment de valeurs.

;]
5]
5]
[
[7e)
it
wn
v

@)

w

0]

Sicons: @charset "UTF-8";

"aye" "\ f112" 13Zpx, .icon-eye:before {

"etart” MAT12e" T6px, display: inline-block;
“stop" "\fl2f" 10px; font-family: "Icon Font";
content: "O";
@each Sname, S$glyph, $size in $icons { font-size: 12px;

-l

con-#{5name}l :before {
display: inline-block;
font-family: "Icon Font"; .dcon-start:before {

content: S$glyph; display: inline-block;

font-size: Ssize; font-family: "Icon Font";

Gl

content: "O";
font-size: 16px;

e

.icon-stop:before {
display: inline-block;
font-family: "Icon Font";

content: "O";
font-size: 18px;

Sass by Romain Van-Damme 2020

@for

La regle @for, écrite @for <variable> de <expression> a <expression> {...} ou @for
<variable> de <expression> a <expression> {...}, compte vers le haut ou vers le bas a partir
d'un nombre (le résultat de la premiére expression) a un autre (le résultat de la seconde) et
évalue un bloc pour chaque nombre entre les deux.

Chaque numéro en cours de route est affecté au nom de variable donné.

SCSS Sass Cs5

Sbase-color: #0836; ul:nth-child(3n + 1) {
background-color: #004080;
@for 5i from 1 through 3 {
ul:nth-child(3n + #{5i}) {
background-color: lighten{5base-color, 51 * 5X%); ul:nth-child(3n + 2) {
background-color: #004ds9;

L

ul:nth-child(3n + 3) {
background-color: #0055b3;

@while

La regle @while, écrite @while <expression> {...}, évalue son bloc si son expression renvoie
true. Ensuite, si son expression renvoie toujours vrai, il évalue a nouveau son bloc. Cela
continue jusqu'a ce que I'expression renvoie finalement false.

SCS5 Dass C55
/// Divides “Svalue by "Sratio’ until it's below Sbase . sup {
@function scale-below(5value, Sbase, Sratio: 1.618) { font-size: 12.360894px;
@while 3value > Shase { L
Svalue: 5Svalue [/ Sratio;
1

@return Swvalue;

Snormal-font-size: 16px;
sup {
font-size: scale-below(28px, 16px);

Sass by Romain Van-Damme 2020

Module

Vous n'étes pas obligé d'écrire tous vos régles Sass dans un seul fichier. Vous pouvez le
diviser comme vous le souhaitez avec la régle @use.

Cette régle charge un autre fichier Sass en tant que module, ce qui signifie que vous pouvez
faire référence a ses variables, mixins et fonctions dans votre fichier Sass avec un espace
de noms basé sur le nom de fichier.

L'utilisation d'un fichier inclura également le CSS qu'il génére dans votre sortie compilée !

5CSS Sass css
_base.scss body {
Sfont-stack: Helvetica, sans-serif; font: 108% Helvetica, sans-serif;
Sprimary-color: #333; color: #333;
body {
font: 100% Sfont-stack; Jdnverse {
color: Sprimary-color; background-color: #333;

color: white;

'/ styles.scss

@use 'basze';

Jdnverse {
background-color: base.5primary-color;
color: white;

Notez que nous utilisons @use 'base’; dans le fichier styles.scss. Lorsque vous utilisez un
fichier, vous n'avez pas besoin d'inclure I'extension de fichier. Sass est intelligent et le
découvrira pour vous.

Sass by Romain Van-Damme 2020

Installation

Pour exécuter Sass en global (recommandé), vous devez avoir installé Ruby sur votre
systéme. Sur les nouvelles versions de Linux et OSX, Ruby est déja préinstallée.

Pour I'installer avec le gestionnaire chocolatey pour windows :

choco install ruby

Pour linux sous Ubuntu/Debian :

$ sudo apt-get install ruby-full

Pour macOS avec le gestionnaire homebrew

$ brew install ruby

Vous pouvez sinon a partir du Github, télécharger le dossier Dart Sass et I'importer
directement dans votre projet, et grace a une ligne de commande, lancer la compilation
du/des fichier(s) en direction d’un résultat. Lancer un watcher (veilleur) qui vérifiera
chaque changement apporté au fichier .scss

Soit vous l'installez en globale, et vous pouvez vous en servir pour tous vos projets.
Soit vous l'installer en locale, mais vous devrez le réinstaller pour un nouveau projet.

Exemple de commande qui permet de lancer sass a partir du dossier dart-sass

./dart-sass/sass sass/style.scss style.css

La premiére partie correspond au fait qu’on se place dans le dossier dart-sass contenant le
fichier qui permet de lancer des lignes de commandes.

La deuxiéme partie indique que Sass doit compiler dans le dossier sass le fichier sass
style.scss en fichier style.css (résultat). Regardez bien les extensions.

Pour éviter d’avoir a retaper la commande a chaque changement sur le fichier .scss afin de
compiler, vous avez la possibilité d’établir ce qu’on appelle un “watcher”, qui va vérifier
chaque changement a la volée.

./dart-sass/sass sass/style.scss style.css --watch

Sass by Romain Van-Damme 2020

https://github.com/sass/dart-sass/releases/tag/1.26.10

Installer n'importe ou (autonome)

Je vous recommande de regarder la documentation officielle, pour étre sir d’étre a jour.

Avec le gestionnaire de packages npm (fonctionne sur tous les systémes) :

npm install -g sass

Avec chocolatey (windows)

choco install sass

Homebrew (macOS)

brew install sass/sass/sass

Pour l'exécuter

En ligne de commande :

sass --watch input.scss output.css

Donc le input.scss c’est le fichier qu’on modifie et que Sass va se charger de compiler en
fichier output.css

Pour prendre le input dans un dossier spécifique et le mettre dans un autre dossier, nous
pouvons utiliser cette commande

sass --watch app/sass:public/stylesheets

On remarque que I'extension n’est pas spécifié ici, Sass comprend automatiquement que la
premiére partie avant le : correspond au fichier a compiler, et la deuxiéme partie au fichier
transformé (output).

IDE

Les IDE moderne integrent souvent des “addons” capable de faire tourner sass sans ligne
de commande :

- PhpStorm

- Visual studio code

- Atom

- Autres...

Sass by Romain Van-Damme 2020

Task Runner

Une autre possibilité souvent utilisée en entreprise, c’est I'utilisation des “task runner”. Ces
outils permettent d’automatiser des taches comme la compilation de fichier .scss en .css
- Webpack
- Gulp
- Grunt

L'inconvénient c’est que la premiére configuration de ce genre d’outil est difficile et longue
lorsqu’on est débutant, surtout pour webpack. Je recommande vivement de d’abord
commenceé par I'utilisation d’'une ligne de commande ou avec un addon d’IDE.

A savoir

L'extension .SASS correspond a la syntaxe originale de Sass. Elle fonctionne sans ; et {}
uniquement a l'indentation, elle est néanmoins difficile a relire lors de gros projet.

Du coup une autre syntax est apparue, celle qui correspond a I'extension .scss qui signifie
Sassy CSS elle a été adopté par la grande majorité des développeurs car on y retrouve la
syntaxe de base comme en CSS avec les avantages du Sass.

Sass ou Less

SASS et LESS, les deux permettent 'utilisation de variables. La différence clé entre SASS et
LESS, est que SASS est basé sur Ruby, alors que LESS utilise JavaScript.

Méme cela ne donne a aucun des pré-processeurs un avantage sur 'autre. SASS est
beaucoup plus populaire.

Mais cela pourrait étre d(i au fait que SASS est un peu plus agé. A l'origine, LESS était pris
en charge par le framework front-end réputé Bootstrap, qui reposait sur le préprocesseur le
plus récent. Mais avec la version 4, le projet a officiellement basculé vers SASS, ce qui a
encore renforceé la popularité de SASS. (Source)

Sass by Romain Van-Damme 2020

https://waytolearnx.com/2019/04/difference-entre-sass-et-less.html

Pour en savoir plus...

Voici donc quelques liens utile :
- https://sass-lang.com/documentation/at-rules/css
- https://www.alsacreations.com/article/lire/1717-les-preprocesseurs-css-c-est-sensass
html
- https://waytolearnx.com/2019/04/difference-entre-sass-et-less.html
- https://www.youtube.com/watch?v=MOstrhqgplsl
- https://fr.wikipedia.org/wiki/Pr%C3%A9processeur_CSS

Sass by Romain Van-Damme 2020

https://sass-lang.com/documentation/at-rules/css
https://www.alsacreations.com/article/lire/1717-les-preprocesseurs-css-c-est-sensass.html
https://www.alsacreations.com/article/lire/1717-les-preprocesseurs-css-c-est-sensass.html
https://waytolearnx.com/2019/04/difference-entre-sass-et-less.html
https://www.youtube.com/watch?v=MOstrhqpIsI
https://fr.wikipedia.org/wiki/Pr%C3%A9processeur_CSS

